Development of a Control System for a Liquid Rocket Engine Test Stand

Daniel Llewellyn, Christian Dove, Barrett Twining, Francis Clark, Henry Holmberg, Rori Myers, Jack Redden The University of Alabama in Huntsville AIAA Region II Student Conference, 4/3/2025 - 4/4/2025

Copyright © by Daniel Llewellyn

Published by the American Institute of Aeronautics and Astronautics, Inc., with permission.

AMERICAN INSTITUTE OF AERONAUTICS AND ASTRONAUTICS | AIAA.ORG

Tartarus Project Introduction (1/2)

Objective

 To provide opportunities for hands-on liquid propulsion experience for UAH students covering all facets of the project design lifecycle

Safety briefing before cold flow

Tartarus Project Introduction (2/2)

A visit from our sponsor AVCO

Subteams

- **Controls**: data acquisition and system control
- Fluids: plumbing and ground systems
- **Propulsion**: engine design, modeling, and analysis
- SE&O: scheduling and

systems management

Team Structure

ALABAMA IN HUNTSVILLE

AMERICAN INSTITUTE OF AERONAUTICS AND ASTRONAUTICS | AIAA.ORG

The Old Control System

AMERICAN INSTITUTE OF AERONAUTICS AND ASTRONAUTICS | AIAA.ORG

Issues With The Old System

- Programed in NI LabVIEW
- Poor connector choice
- Confusing UI
- Hard limit to expandability
- Low data fidelity
- Unreliable
- Unable to meet new requirements

Goals For The New System

- Expandable
- Reliable

7

Reasonably priced

AMERICAN INSTITUTE OF AERONAUTICS AND ASTRONAUTICS | AIAA.ORG

- □ Field Laptop, TC box, PT box, SV box \rightarrow MTS Controller
- $\square \text{ NI DAQs} \rightarrow \text{CCI boards}$
- $\Box \quad \text{NI LabVIEW} \rightarrow \text{C++ and Python}$
- The removal of discontinued or antiquated parts
- User Friendly UI
- More detailed documentation of the entire system

New System Requirements (1/2)

9

New System Requirements (2/2)

#	Requirements
4	The MTS Computer shall be able to
	communicate with all CCI boards at the same
	time via UART.
5	Communication with each CCI board shall be at
	a baud of 115200

MTS Controller Requirements (1/2)

#	Requirements
1	The entire MTS Controller shall be housed in an
	area no more than 4 square feet.
2	The MTS Controller shall be housed in a server
	rack system that allows for ease of assembly
	and upgradability.

MTS Controller Requirements (2/2)

12

CCI Board Requirements(1/6)

CCI Board Requirements(2/6)

#	Requirements
4	Each board shall have 8 inputs for PTs
5	Boards shall communicate with the MTS computer via UART
6	Each board shall have an enclosure with 3 K-type TC connectors

CCI Board Requirements(3/6)

#	Requirements
7	Each board shall have an enclosure with 5 T-type TC connectors
8	Each board shall have an enclosure with 8 XLR inputs for PTs/Analog input
9	Each CCI board shall have 8 relays, controlled by the microcontroller

CCI Board Requirements(4/6)

#	Requirements
10	Each relays shall be able to pass a minimum of 1A @ 24V
11	Each CCI box shall have 8 XLR ports connected to the relays for commanding valves

CCI Board Requirements(5/6)

#	Requirements
12	CCI boards shall have a method of measuring valve actuation status
13	CCI box shall have an XLR input for MTS computer UART control
14	CCI boards shall be powered by a 12V supply

CCI Board Requirements(6/6)

#	Requirements
15	The relays shall be able to either output the
	12V input to the board, or a different voltage
	from an external input.
16	Reliability and durability shall be prioritized and
	as such the system shall prioritize industry
	grade COTS components.

Base Station Requirements(1/2)

#	Requirements
1	Must consist of a desktop and all physical buttons and switches needed for safe firing
2	The desktop will have at minimum 3 monitors to display our custom GUI with data readouts, valve actuation, and camera feeds

Base Station Requirements(2/2)

#	Requirements
3	The monitors must have a screen size of a minimum of 24 inches for easy of reading a large amounts of information on them
4	There must be a physical abort button, connected with with a separate wire, that can stop the engine in the event of an emergency

Software Requirements(1/6)

Software Requirements(2/6)

#	Requirements
3	The GUI will have an interactive P&ID, that shows status of all sensors and valves connected to the CCI boards
4	The GUI must be able to command valves to open and close, and to command system events like engine startup

Software Requirements(3/6)

#	Requirements
5	The GUI must have live camera feeds from
	cameras positioned around the ETS and in the
	trailer

Software Requirements(4/6)

#	Requirements
6	The GUI must generate its own system event
	logs from the data received from the CCI
	boards/MTS computer. Faults and other
	conditions such as overpressure events must
	be recorded in this log

Software Requirements(5/6)

Software Requirements(6/6)

#	Requirements	
9	Version management software like GitLab or	
	GitHub must be kept up-to-date for all	
	software components	

Control System Overview

MTS Controller

- Contains MTS Computer and CCI Boards
- CCI Boards
 - Command control and instrumentation
- Base Station
 - Graphical user interface
- Igniter

27

□ COTS automotive ignition coil and spark plug

Control System Block Diagram

MTS Computer

Raspberry Pi 4s

Communicate live data to the base

station via Ethernet

Communicate with all of the CCI
boards using a UART connections

Image Credit: Raspberry Pi

Network Switch

Dell Powerconnect 5324 features:

- 24 Gigabit Ethernet ports
- □ 4 SFP Fiber ports
- Configurable
- Remotely managed

Image Credit: Dell

MTS Power System

APC Back-UPS RS 1500

Sportsman Series 1000-Watt 2-Cycle Generator

Image Credit: APC, Sportsman

MTS Controller Power Budget

Components	Max Quantity	Voltage (V)	Max Current (mA)	Total Wattage (W)
MCP9600 TC Amp	24	3.3	0.3	0.024
TE Connectivity M3041	24	12	3.5	1
Solenoid Valve	24	24	200	115.2
RPi4S	1	5	1800	9
CCI Board	3	24	2000	144
Network Switch	1	120	800	96

Total Power	Generator Load
365 W	41%

AMERICAN INSTITUTE OF AERONAUTICS AND ASTRONAUTICS | AIAA.ORG

Base Station Power Budget

Components	Quantity	Voltage (V)	Max Current (mA)	Total Wattage (W)
Intel NUC	2	19	2580	98
ASUS VE278	2	120	266	64
Dell P2417h	1	120	325	39
Network Switch	1	120	800	96

Total Power	Generator Load
297 W	33%

AMERICAN INSTITUTE OF AERONAUTICS AND ASTRONAUTICS | AIAA.ORG

MTS Computer Initialization

SHAPING THE FUTURE OF AEROSPACE

AMERICAN INSTITUTE OF AERONAUTICS AND ASTRONAUTICS | AIAA.ORG

36
MTS Computer Main Loop

Data Processing

Time	System State	PT0	•••	PT23	TC0	•••

TC23	LC0	LC1	SV0 State	•••	SV23 State	TC23

- TCP over an Ethernet connection
- Procedures sent as TOML files
- Individual commands in SCPI
 - 1999 format

39

 Data begins transmitting upon connection

[config]

name = "Valve Open Example"
data_rate=100 # Data rate in packets/second

Procedure

[step.1]

Open Solenoid Valve 1
command=":CONTrol:SV1:ENABle ON"
time=100 # Trigger at 100ms after start
delay=10 # Send error if valve not actuated in 10ms
whether to error and continue, hold further steps,
or shutdown after delay has passed
severity=1

[step.2]

Close Solenoid Valve 1
command=":CONTrol:SV1:ENABle OFF"
time=200
delay=10
severity=2

[config]
name = "Valve Open Example"
data_rate=100 # Data rate in packets/second

[step.1]

```
# Open Solenoid Valve 1
command=":CONTrol:SV1:ENABle ON"
time=100 # Trigger at 100ms after start
delay=10 # Send error if valve not actuated in 10ms
# whether to error and continue, hold further steps,
# or shutdown after delay has passed
severity=1
```


[step.2]

```
# Close Solenoid Valve 1
command=":CONTrol:SV1:ENABle OFF"
time=200
delay=10
severity=2
```


SCPI

- Human readable
- Plain text
- Industry standard
- Extensible

```
SYSTem
    :UNIT
        :PRESsure PA|PSI|BAR
        :TEMPerature F|C|K|R
    :REDLine
        :PT[1-24]
        :TC[1-24]
        :LC[1-6]
CAL
    :[PT,LC,TC][1:24]<Offset
>
CONTrol
    :ACTuate:SV[1-24]
MEASure
    :[PT,LC,TC][1:24]
```


SCPI Command	Operation
SYST:UNIT:PRES PSI	Set pressure unit to PSI
SYST:REDLine PT3 700	Set PT3 Redline to 700 PSI
CAL:TC7 -3	Offset TC7 by -7° fahrenheit
CONT:ACTuate:SV12 1	Open solenoid valve 12

- Human readable
- Plain text
- Industry standard
- Extensible

Code	Operation	Example
0x00	Always a NOP (No Operation)	0x00 0x00 0x00 0x00 → NOP
0x01	Configure redlines • 0x1[0:7] to TC Number • 0x2[0:7] to PT number • 0xXXXX to redline (16 bit)	0x01 0x25 0x59 0x5D \rightarrow Set PT 6 redline to 200 PSI (listed in corresponding ADC value)
0x02	Configure sensor • 0x1[0:7] to TC number • 0x2[0:7] to PT number • 0x3[0:1] to LC number • 0x1[0:1] to Disable Enable	0x02 0x31 0x10 0x00 → Configure LC 2 to be disabled
0x03	Measure • 0x1[0:7] to TC number • 0x2[0:7] to PT number • 0x3[0:1] to LC number	0x03 0x12 0x00 0x00 → Measure value on TC 3

Code	Operation	Example	
0x04	Valve Command • 0x1[0:7] Actuate Valve Number • 0x2[0:7] Status Valve Number	0x04 0x27 0x00 0x00 \rightarrow Get the status of SV 8	
0x05	Retrieve Sensor Data • 0x1[0:7] to TC number • 0x2[0:7] to PT number • 0x3[0:1] to LC number	0x05 0x15 0x00 0x00 → Retrieve all data from TC 6	
0x06	 Passthrough 0x1[0:2] to connected CCI number 	0x06 0x12 0x00 0x00 0x02 0x30 0x10 0x00 \rightarrow Configure LC 1 to be disabled on connected CCI Board 3	
0x07	End Passthrough	0x06 0x12 0x00 0x00 0x04 0x16 0x00 0x00 0x07 0x00 0x00 0x00 0x05 0x21 0x00 0x00 \rightarrow Actuate SV 8 on connected CCI Board 3, Retrieve all data from PT2 on upstream CCI	

CCI Board Block Diagram

ALABAMA IN HUNTSVILLE

Microcontroller Overview

Image Credit: Microchip

Microchip SAMD51P20A

- ARM Cortex M4 processing core
- Dual, 1 MSPS ADCs
- Direct Memory Access Controller
- 99 GPIO pins
 - 3 UARTS, 2 x I2C, 3 x SPI, USB 2.0 D+/-

Flash

GigaDevice Semiconductor GD25Q256EWIGR

- QSPI interface
- □ 32MB of storage
- Reliable, high speed, SLC NOR flash
- □ Runs at up to 133 MHz
- 250us page write time

Image Credit: GigaDevice Semiconductor

Flash Schematic

ALABAMA IN HUNTSVILL

Sensor Data Throughput

Number of Component	Component	Sampling Rate	Number of Bytes per Second
2	Load Cell	320 Hz	1280
8	Thermocouple	200 Hz	3200
2	Pressure Transducer (16-bit)	1000 Hz	4000
6	Pressure Transducer (14-bit)	62000 Hz	744000

Sensor Data Throughput

about 0.75MB per second, per CCI Board

Thermocouple Amplifier

Microchip MCP901

- □ Up to 200 Hz data output rate
- □ 0.5 °C Accuracy
- Supports type K, J, T, N, S, E, B and R thermocouples
- Premade software library

Image Credit: Microchip

55

Thermocouple Amplifier Schematic

Thermocouple Amplifier Example Code

```
#include <SparkFun_MCP9600.h>
 1
 2
     MCP9600 TC;
 3
 4
     void setup()
 5
 6
 7
        Serial.begin(115200);
       Wire.begin();
 8
       Wire.setClock(100000);
 9
       TC.begin();
10
11
        if (!TC.isConnected())
12
13
         while(1);
14
15
16
17
18
     void loop()
19
        if(TC.available())
20
21
         Serial.println(TC.getThermocoupleTemp());
22
23
        3
24
25
57
```


ALABAMA IN HUNTSVIL

Load Cell Amplifier

- **Π** High Precision 24-Bit Σ - Δ AD
- Communicates over I2C
- Compact 16-SOP Package
- Premade software library

Image Credit: Nuvoton

HE FUTURE OF AEROSPACI

Load Cell Amplifier Example Code

```
#include <Wire.h>
 1
     #include "Sparkfun_Quiic_Scale_NAU7802_Arduino_Library.h"
 2
 3
     NAU7802 LC;
 4
 5
 6
      void setup()
 7
       Serial.begin(115200);
 8
       Wire.begin();
 9
10
        if (!LC.begin())
11
12
13
          while(1);
14
15
16
     void loop()
17
18
19
       Serial.println(LC.getReading());
20
21
60
```


ALABAMA IN HUNTSVIL

CCI Board Power Subsystem

	THE UNIVERSITY OF
	ALABAMA IN HUNTSVILL
TARTARUS	📀 🙆

Voltage	Protected/Regulated
+Supply	LTC4367 IC
+9V	RTQ2569
+6V	AP63201WU-7
+5V	MAX17634B
+3.3V,	AP63203WU-7
+3.3 V _{Ref}	LT6660K

61

CCI Board Power Subsystem

Voltage	Protected/Regulated
+Supply	PT output, SV output
+9V	Excitation Voltage for Load Cells
+6V	SV Relay Coil Supply
+5V	RGB LEDs, Expansion Ports
+3.3V,	Processor, Sensors, Data Storage
+3.3 V _{Ref}	Processor Precision Voltage

CCI Board Power Subsystem

CCI Board +9V Power Rail Supply

CCI Board +6V Power Rail Supply

CCI Board +5V Power Rail Supply

67

CCI Board +3.3V_{ref} Power Rail Supply

CCI Board Enclosure

PSI = (0.01967)(ADC) - 250

CCI Board +3.3V_{ref} Power Rail Supply

Solenoid Valves Control

- □ Actuate up to 8 SVs
- Each SV channel can handle up to2A at 30V
- Each valve has a limit switch to detect its actual position

Direct Memory Access

ALABAMA IN HUNTSVILLE

AMERICAN INSTITUTE OF AERONAUTICS AND ASTRONAUTICS | AIAA.ORG

CCI Board Software Flowchart

AMERICAN INSTITUTE OF AERONAUTICS AND ASTRONAUTICS | AIAA.ORG

Future Expandability

AMERICAN INSTITUTE OF AERONAUTICS AND ASTRONAUTICS | AIAA.ORG

Base Station Desktop

- Intel NUC7i7BNH
- Displays GUI
- Runs Base Station backend

software

Displays all live camera feeds to monitors

Image Credit: Intel

Base Station Setup

Image Credit: ASUS, Dell

Base Station Monitors

Image Credit: ASUS, Dell

Solenoid Valves Specs

TEMCo PV0173:

- □ Working Pressure: 21.76 to 116 psi
- Maximum Pressure: 174 psi
- □ Voltage: 24 VDC
- □ Operating Temperature: -5 to 60 C

Image Credit: TEMCo

Solenoid Valves Specs

AVCO Solenoid Valves:

- □ Working Pressure: 35 to 150 psi
- Maximum Pressure: 150 psi
- □ Voltage: 24 VDC
- Operating Temperature: -17 to 82 C

Image Credit: AVCO

Solenoid Valve Locations

SHAPING THE FUTURE OF AEROSPACE

AMERICAN INSTITUTE OF AERONAUTICS AND ASTRONAUTICS | AIAA.ORG

TE Connectivity M3041-000005-01KPG:

- Operating Pressure: 1000 psi
- Burst Pressure: 5000 psi
- Supply Voltage: 10 30V
- □ Operating Temperature: -20 to 85 C

Image Credit: TE Connectivity

PT Protection from Cryogenic LOx

- Cryogenic LOx Temp -183 C.
- D PT minimum rated temperature: -20 C
- Thin layer of Krytox GPL201 grease on the internal disk that contacts the liquid oxygen

Image Credit: Krytox

PT Locations

Load Cell Specs

SBA-300LB-I:

- □ Load capacity: 300lbs
- □ Safe overload: 150%
- □ Supply Voltage: 10 15V
- Operating Temperature: -10 to 40 C

Engine Cage Load Cell Model

Thermocouple Specs Specs

- K-type: Omega KMTXL-062E-6
 - Max temp: 1338 C П
- K-type: Omega KMQXL-062G-12
 - Max temp: 1338 C

87

T-type: Omega TC-T-1/8NPT-G-72 Max temp: 650 C

Image Credit: Omega

TC Locations (K-Type)

SHAPING THE FUTURE OF AEROSPACE

TC Locations (T-Type)

SHAPING THE FUTURE OF AEROSPACE

AMERICAN INSTITUTE OF AERONAUTICS AND ASTRONAUTICS | AIAA.ORG

Lorex H13

Image Credit: Lorex

- □ Resolution of 4K
- Works over IP

90

□ 108 degree field of view

GoPro Hero 6/8

□ Hero 6

- 1080p resolution, 240 frames per second
- □ 47 minutes of battery life
- Hero 8

- □ 4K resolution, 60 frames per second
- 86 minutes of battery life

Runcam 5 Orange

- □ 4K resolution at 30 frames per second
- □ 2.7K resolution at 60 frames per second
- □ 105 minutes of battery life

Image Credit: Runcam

- Powered by automotive grade ignition coil
- Receives power from 4 3V 123A batteries
 in a battery pack
- Actuated via relay controlled by physical switch at base station

Igniter Spark Plug and Coil

Igniter Prototype Assembly

Igniter Enclosure

- Circuitry held within DSE HI Box NE-OOO-1515
- □ Ignition coil mounted inside
- Entire box then mounted to the backof the ETS

Igniter Box

- Verified ignition temperature
- Verified ignition control system
- Verified data collection methods

□ Fast and well-supported □ Ease of development

Development Environments

Image Credit: Arduino, JetBrains, Microchip

Data Collection Test

- Validate the reliability of data collection and processing
- □ Validate data collection and processing speeds

Verify the reliability of using Ethernet cable and
 Ethernet repeaters at the required minimum safe
 distance of 500ft from the ETS

System Set Up Test

Verify that the system can be efficiently assembled and disassembled.

- □ Low pressure injector test
 - □ Validate and calculate discharge coefficient of

initially machined injector

□ Igniter test

□ Verify that our torch igniter reaches 1522K

- Venturimeter flow test
 - Verify venturimeter design, the ability to obtain

accurate data

- Low pressure leak test
 - □ Verify that all fittings are connected properly

- □ Water flow test no injector
 - Verify pressure losses throughout the fluids system
- □ Water flow test with injector

Verify pressure losses throughout system and discharge coefficient

- □ High pressure water flow test
 - Verify system can operate under expected firing pressures.
- Cryogenic wet dress test
 - Practice standardized procedures to verify all personal are prepared for hotfire

□ Hotfire

Final full system hot fire to verify *Prometheus* engine
 dynamics and performance of Mobile Test Stand

AMERICAN INSTITUTE OF AERONAUTICS AND ASTRONAUTICS