
The Design of a Modular Avionics System for Spaceshot Liquid
Rockets

Cody Kaminsky∗, Tymur Tkachenko†, Jeff Shelton‡, Sasha Callaway§, Vineet Kulkarni¶, and Aras Shirwan‖

Georgia Institute of Technology, Atlanta, Georgia, 30332

Avionics systems in high-performance collegiate liquid rocketry are crucial for data acqui-
sition, control, and recovery. However, these systems are often custom-built for each vehicle,
requiring repetitive research and development, which extends timelines and leads to decreased
testing and reliability. This paper discusses the design of a modular and customizable avionics
system developed by the Yellow Jacket Space Program, which includes both flight hardware,
ground hardware, and software components. The Yellow Jacket Space Program simultaneously
operates two vehicle programs and an engine development program. The goal of streamlining
avionics development led to the creation of a modular, easily revisable, and functionally efficient
avionics system. The system is divided into a flight system and a ground system; the flight
system focuses on controlling the propulsion system, acquiring vehicle sensor data, estimating its
position and heading, and providing a recovery signal upon vehicle landing. The ground system
allows operators to observe and control vehicle states by receiving live data from sensors and
controlling valves. Central to the Yellow Jacket Space Program (YJSP) avionics is the System
Avionics Module (SAM) printed circuit board assembly (PCBA), which provides localized valve
control and data acquisition of current loop sensors, thermocouples, resistance temperature
detectors, and differential sensors, transmitting live data to a custom GUI operated in mission
control. The flight system utilizes the SAM, along with five other custom PCBAs, to meet the
functional requirements of the vehicles. All components in the system are programmed using
Rust to create memory safe code and eliminate unexpected errors. Devices are programmed
with custom firmware to enable efficient data acquisition and guarantee expected performance.
The avionics system topology discussed in this paper allows for rapid testing and revision of
individual components while enabling YJSP to adapt to future vehicle programs regardless of
new requirements.

I. Introduction
The Yellow Jacket Space Program (YJSP) is a motivated collegiate team at the Georgia Institute of Technology,

with the goal to become the first group to launch a liquid-fueled rocket into space. Our first major achievement was
Goldilox, a pressure-fed kerosene and liquid oxygen rocket, launched in January 2023. Goldilox reached an apogee of
1,508 meters and served as a proof-of-concept, providing valuable insights and experience for the development of our
next pressure-fed rocket, Vespula. During the development of Goldilox, we also introduced Darcy I, a simpler liquid
propulsion system based on Half Cat’s nitrous oxide and isopropyl alcohol rocket. Launched in July 2022, Darcy I
reached an estimated apogee of 6,096 meters. Building on the successes of Darcy I, Darcy II was designed to be a
record-breaking vehicle. It was successfully launched in 2023 claiming the collegiate rocketry altitude record of 9,198
meters. After Goldilox and Darcy II launched, there was an increased desire to design better engines for future higher
performing liquid rockets. This resulted in the design of the Helluva Engine Test Stand (HETS) program.

Leveraging the knowledge gained from Goldilox and Darcy II, YJSP aimed to streamline the design process to
create faster and more reliable systems. This goal extended to the Avionics sub-team as well. Throughout the design,
integration, and flight of Darcy II and Goldilox there were a number of issues identified that the avionics team sought to
improve. The most significant challenge was the lack of testing and reliability in the different parts of the system. This
challenge is particularly hard for a student team where the team sizes are small and commitment levels can vary.

∗Vespula Avionics Lead, Yellow Jacket Space Program, AIAA Graduate Student Member
†Darcy Avionics Lead, Yellow Jacket Space Program, AIAA Undergraduate Student Member
‡Director of Avionics, Yellow Jacket Space Program, AIAA Undergraduate Student Member
§Helluva Engine Test Stand Avionics Lead, Yellow Jacket Space Program, AIAA Undergraduate Student Member
¶Software Lead, Yellow Jacket Space Program, AIAA Undergraduate Student Member
‖Flight Computer Responsible Engineer, Yellow Jacket Space Program, AIAA Undergraduate Student Member

1

Furthermore, the previous software architecture was hardware-specific, lacked configuration, and placed constraints
on the operator’s experience regarding viewing data and actuating valves simultaneously. Given these constraints, the
decision was made to design a modular avionics system that reused components as much as possible. The goal was for
common parts to be used across all three systems, increasing reliability and reducing development time. A secondary
problem was over-reliance on a few individuals to complete the system. We aimed for the modularity of our avionics
system to address this problem as well. Each board designed had minimal inter dependencies, allowing individual
components to be modified without impacting the design of other components. To achieve modularity in the ways
mentioned, we distilled the requirements of the systems down to their essential parts.

This paper will discuss the proposed avionics design for the new engine test stand, our second kero-lox vehicle, and
the third Darcy vehicle. The focus will be on the advantages of designing our system with modularity and how that
affected the three different programs. The system designs shown are proposed as examples for how an avionics system
can be developed for liquid spaceshot rockets, such as Darcy Space and the successor to Vespula.

II. Proposed System Overview
Each of YJSP’s three programs-HETS, Darcy, and Vespula-requires distinct functionality, leading to variations in

system implementation. Our modular system allows us to reuse components across all three programs while adapting
them to meet specific mission requirements through configuration and system integration. The role of our avionics
systems in each of our programs is outlined below.

A. Helluva Engine Test Stand
The Helluva Engine Test Stand (HETS), is YJSP’s transportable engine test stand. HETS is a pressure-fed system

built around a trailer which houses the fluids and pneumatics systems connected to a ground-anchored thrust structure
upon which the engine is mounted. The primary operational goal of the test stand is the rapid and safe characterization
of YJSP’s engines. The avionics system supporting HETS requires localized data acquisition of sensors, valve actuation,
and control of various other systems such as a fuel pump, igniters, and cameras. The custom component developed for
this is the System Avionics Module (SAM), a modular board that supports pressure transducers, thermocouples, load
cells, differential pressure sensors, relays, and pneumatic valves. Avionics are remotely monitored and controlled in the
Mission Control (MC) trailer located a safe distance away. The MC trailer hosts the ground computer, the control server,
and the operator’s Graphical User Interface (GUI), which are explained in the Software Implementation section of this
paper.

Fig. 1 HETS Avionics System Diagram

For a spatially distributed system like HETS, having SAMs in close proximity to their valves and sensors allows
for shorter harness lengths and localized control. With HETS being an outdoor test stand with continued incremental

2

changes and upgrades, having a modular system allows for increased flexibility and ease of replacement in the case that
a SAM gets damaged. Replacement or addition of an SAM simply requires mapping the valves and sensors in the GUI
to the new SAM and connecting it to power and the network. All SAMs are connected to a Ground Support Equipment
(GSE) box via an Ethernet connection and DC power. The GSE box features power distribution and a network switch that
connects all SAMs and IP cameras to the MC trailer over a fiber optic connection. The MC trailer has four computers,
two dedicated to the GUI operated by engine test stand operators, a computer for IP cameras positioned around the
stand, and one computer to run the ground computer, control server, and all connections to the SAMs.

Since the test stand is designed for engine characterization, the avionics system must support a variety of measurement
projects. Such projects include heat flux, calorimetry, and different temperature measurements within the engine and
injectors. Having a modular system that allows for the quick addition of sensor capabilities is invaluable for better engine
understanding and measurement. To give a specific example, the Torch Igniter is an in-progress engine development
project that requires 2 additional valves and several sensors. In order to support the testing of this project as well as
integration onto HETS, the changes needed from the avionics side simply necessitates adding a singular new SAM and
harnessing.

B. Darcy Space: Nitrous Oxide and IPA
The Darcy vehicle program retains the ground testing necessities of HETS with the addition of a flight avionics

system. The Darcy architecture does not require any avionics control over propulsive system elements, allowing the
avionics to be entirely contained within the avionics bay located in the nosecone. The goal of the system is to enable
accurate data collection during flight, consistent deployment of parachutes, and reliable vehicle tracking after landing.
The current Darcy vehicle implements the common flight avionics stack, greatly decreasing the risk of an unexpected
and untested failure during flight.

Fig. 2 Diagram of the Vehicle Ground System

The Darcy flight avionics system consists of the Battery Management System (BMS), Blackbox (BBX), Recovery
(RECO), Attitude Heading and Reference System (AHRS), and Telemetry (TELEM). These sub-components were all
chosen based on the functional requirements for the vehicles we had in mind. The BMS is primary responsible for the
managing of the lithium-ion cell-based battery pack and distributing protected power to the rest of the system using

3

load-switches. BBX is the node that houses the Flight Computer (FC) and is responsible for storing all flight data and
relaying vehicle location information back to the ground station via the Iridium satellite constellation. RECO is designed
as a single fault-tolerant system that determines the position of the rocket during flight with a Kalman filter and deploys
parachutes at the proper times. AHRS has a high fidelity IMU, barometer, and magnetometer to collect data that can be
analyzed after a launch of the vehicle. Lastly, TELEM is the board that has two RF bands and a GPS to deliver real
time data to the ground station and to collect vehicle location data during its flight. The functional requirements were
separated into these different boards so that each one could be worked on independently from each other with the only
connections between them being power or communications.

The ground avionics and the flight avionics are on separate networks, only interacting through transmissions over
telemetry. The ground system utilizes the SAM boards in a similar way to HETS. The GSE boxes containing the SAM
boards are used to be able to rapidly connect pressure transducers, valves, load cells, and thermocouples, and to be able
to control the system from the mission control trailer. The flight avionics peripherals are connected as nodes in a star
topology network system, all being connected to an Ethernet switch and allowing for the seamless addition of new
system components.

Fig. 3 Diagram of the Flight Avionics Bay

C. Vespula
The Vespula program avionics requirements include those from both HETs and Darcy while incorporating additional

functionality. The vehicle avionics shares the five sub-components that Darcy uses and stores them below the rocket’s
nose cone. Allowing for compatibility between both Darcy’s and Vespula’s avionics systems made the development
process smoother in that we only had to develop a single avionics system instead of two. The vehicle portion of the
system has the unique challenge of requiring localized data acquisition of sensor data and control of various solenoid
valves. This is accomplished with the flight version of the SAM that is smaller and optimized for a flight configuration.
The hardware design is identical between the flight version and ground versions except for the connectors and some
additional requirements for the flight version. This made it so that the software written for the ground SAMs could
be seamlessly adapted for the flight SAMs further decreasing the development time due to modularization. Shown in
Figure 4, the three flight SAMs are positioned in each of the inter-tanks which was done so that the wiring harness going
down the rocket was reduced to power and communications. This resulted in a simpler integration and faster debugging
of issues.

The nodes of the Vespula Avionics system are connected on a shared Ethernet network where each node has a
statically assigned IP based on the type of node and its identification number. On the flight system, there is one Ethernet
switch dedicated to the three flight SAM boards which lives in the second inter-tank and there is one Ethernet switch in

4

the avionics bay that connects the flight SAM switch, avionics bay boards, and provides a connection to the ground
system. The ground system network has one switch that bridges the ground SAMs, flight system, and our mission
control trailer. This is one difference to the Darcy Avionics in that Vespula requires the ability to control the vehicle
propulsion system on the ground.

Fig. 4 Vespula Vehicle Avionics System Diagram

Reducing risk by applying modular hardware from different programs was the key to creating a solution that met
the goals of the Vespula program. At the same time, developing a complementary software system to work with our
modular hardware was critical to the success of our programs.

Fig. 5 Vesupla SAM boards alongside the Avionics Bay holding the Flight Computer, AHRS, BMS, RECO and
TELEM.

5

III. Software Implementation
The software stack for our avionics system is designed to provide seamless control and monitoring over all

mission-critical components. It consists of three major software nodes (Flight Computer, Control Server, and GUI) that
communicate over a networked architecture. Each node is explained in detail below.

Fig. 6 Software Architecture for Mission Control, Flight, and Ground Systems

A. Flight Computer
The Flight Computer (FC) is a computer program written in the Rust programming language and designed for use

on Unix-based operating systems. Some responsibilities include, but are not limited to: centralizing communication
between the control server and the vehicle’s hardware subsystems, maintaining vehicle software integrity, and executing
sequences sent from the control server.

The FC centralizes communication by receiving sensor data from all registered subsystems, processing and
synthesizing the data into a single message, and sending the message to the control server. This entire process is
conducted at a constant rate. Any subsystem that connects to the FC can begin sending sensor data, without needing
to coordinate with the other registered subsystems. If a subsystem stops communicating, the FC will deregister the
subsystem and execute the relevant logic to handle the disconnection. The entire connection and disconnection process
is automated, and was designed from the ground up to be modular and hands-off.

Part of the goal of the FC is to abstract the individual components of the vehicle into a single entity. Operators can
interact with the vehicle through the FC with a single mechanism known as sequences. A sequence is a script of Python
code that has access to all the valves and sensors on the vehicle (see Appendix A). Operators can then write closed-loop
control procedures using available vehicle data, all within the Python language. The operators do not need to concern
themselves with the specific subsystems connected to the FC. As long as those subsystems have access to the valves and
sensors used by the sequence, the sequence can be reused as many times as necessary without modification.

Additionally, the FC software is hardware-agnostic; so long as the FC has access to the network and the underlying
operating system is Unix-like, the FC will work without requiring modifications to the source code. This allows the same
FC software to run on both the physical onboard Flight Computer, such as when its running on the Vespula rocket, or on
the physical Ground Computer, such as when engines are tested during hot fires. Figure 6 demonstrates this modularity.

6

B. Control Server
The control server is the central device which coordinates actions and data between all other parts of the system. It

maintains a direct connection to the flight and ground computers, as well as direct HTTP connections to all operator GUI
computers. The control server translates the human-readable operator commands from the GUI computers into specific,
actionable commands for hardware and forwards them to the flight and/or ground computer. It is also responsible
for logging all data originating from the flight and ground computers to a database so that it can be analyzed later.
The control server is a crucial component for our modular architecture because it is the one component that knows
about all others and is positioned to connect the operators to the Vehicle system. The control server can support
an arbitrary number of operator GUIs, receiving commands and forwarding out live data to all of them at once. It
supports simultaneous connection of a flight computer in the vehicle and a ground computer controlling ground support
equipment. It does so by relaying operator commands to the proper destination.

The architecture of the control server software is much like that of a traditional web server, and it uses several
web technologies to function. It uses a Rust application that hosts an HTTP server and exposes several HTTP routes
for commands, data streaming, setting mappings, and performing administrative actions. All messages are passed
in human-readable JSON format between the control server and GUI. This software design decision improves the
modularity and the ability to debug the system, as Avionics operators can use ordinary networking tools to inspect,
modify, and patch the system with relative ease in a human-readable form.

The control server has another element of its architecture which connects to the ground and/or flight computers. The
flight computer automatically detects the existence of the control server by locating its network hostname and attempting
to connect. It has a predefined list of hostnames that it cycles through until a connection is formed. As a consequence of
this auto-discovery, we can adopt different network topologies for each Vehicle’s networking infrastructure, and yet the
ground server and flight computer always find a path to each other with no extra configuration required.

C. Graphical User Interface (GUI)
The GUI serves as the primary interface for operators to interact with the system, providing real-time control,

monitoring, and configuration management for valves, sensors, and sequences. Designed for both ease of use and
operational flexibility, the GUI ensures seamless management of avionics systems across all programs, including HETS,
Vespula, and Darcy. Built using a Rust-based backend for robust state management and a TypeScript + Solid.js frontend,
the GUI leverages the Tauri framework to enable efficient, lightweight, and native application deployment across
multiple operating systems.

A key feature of the GUI is its multi-window architecture, which allows operators to configure their workspace
dynamically. Users can open multiple windows to display specific system views, such as real-time sensor data, valve
states, and sequence execution. This adaptability ensures that each operator can tailor their interface based on their
specific role and responsibilities, enhancing situational awareness and workflow efficiency.

Fig. 7 Configuration Viewing and Editing Page in the GUI

7

The GUI also provides extensive configuration and sequence editing capabilities, enabling operators to define and
modify sensor and valve mappings and automate control logic through sequences as needed. These configurations
ensure that each mission setup is precisely tailored to its operational requirements, allowing for quick adaptation between
different test environments. The GUI communicates with the control server over Ethernet, sending commands as HTTP
requests and receiving real-time data through a webstream, a simple communication setup allowing for reliable operation.
With the ability to run multiple instances of the GUI that can connect to various instances of the control server, our GUI
offers a scalable control system, making it a powerful tool for modular liquid rocketry avionics operations.

IV. Conclusion
The modularity that we built into the system was able to solve the issues we had with our previous avionics systems.

Despite having limited resources in people and time, the above avionics systems have been designed and implemented
in the last two and a half years. Starting with the HETS avionics system, a lot of experience was gained with the SAM
boards, Control Server, Ground Computer, and GUI which culminated in ten engine hot fires over the course of four
weeks in the Spring of 2024. This series of rapid testing was a result of the modularity in the hardware and software
systems. When there were problems with SAM boards, we could seamlessly exchange them for a working one without
additional delays to the schedule. Operators were able to quickly learn how the system worked to the extent that they
could run the software without avionics assistance. In the Fall of 2024, both the Vespula and Darcy programs began
component testing which was able to be supported with a modified ground system using a single SAM which again
proved the usefulness of our modular system. Once the vehicles began being integrated in the Spring of 2025 with all
the sub-components defined in the paper, it took less than three weeks before the vehicle’s avionics were fully integrated
and supporting testing. The modularity of the system allowing for fast development, quick modifications, and easy
configuration led to these successes and will enable YJSP’s goal to be the first collegiate team to launch a liquid rocket
to space.

8

V. Appendix

A. An Example of a Sequence
Sequences are written in Python by the operators, allowing for adaptability and flexibility. Specific phases can be

easily adjusted this way without altering the entire workflow.

flow sequence
start sequence at T - 3.000
import time

print(’Flow Sequence has begun’)
ftpt_target = 420 * psi # psia, target fuel tank pressure
otpt_target = 360 * psi # psia, target lox tank pressure
switch_open = 3486 * psi # psig, COPV pressure to open switch valves

ran = 5 * psi # psi, range for bang bang algorithm
wait_timing = 5 # ms, for loop check timing
press_time = 3000 # ms, time before sequence starts
flow_time = 27.5 # s, time we are flowing for

fmv_open = 86 # ms, observed FMV actuation open time
fmv_close = 100 # ms, estimated FMV actuation close time
omv_open = 62 # ms, observed OMV actuation open time
omv_close = 100 # ms, estimated OMV actuation close time

lox_open_lead = 200 # ms, targeted lox lead time
lox_close_lead = 500 # ms, time to close OMV before FMV to avoid ox rich

start_wait = press_time - omv_open - lox_open_lead # time to actuate OMV at
fmv_open_wait = omv_open + lox_open_lead - fmv_open # wait between opening omv and fmv
lox_close_wait = omv_close + lox_close_lead - fmv_close # time to wait after closing omv

wait_for(start_wait * ms)
OMV.open()
wait_for(fmv_open_wait * ms)
FMV.open()
wait_for(fmv_open * ms)

print(’Main Valves have Opened and Flow has begun’)
curr_time = time.time()
start flow
while time.time() < curr_time + flow_time:
determine if switch valves need to open
if PRPT.read() < switch_open and OSWV.is_closed():
FSWV.open()
OSWV.open()
print(’The switch valves have opened’)

bang bang algorithm
if FTPT.read() > ftpt_target+ran and FBB.is_open():
FBB.close()

if FTPT.read() < ftpt_target-ran and FBB.is_closed():
FBB.open()

if OTPT.read() > otpt_target+ran and OBB.is_open():
OBB.close()

if OTPT.read() < otpt_target-ran and OBB.is_closed():
OBB.open()

close OMV before FMV
OMV.close()
OBB.close()
wait_for(lox_close_wait * ms)
FMV.close()
FBB.close()
OVNT.open()
FVNT.open()
print(’Flow Sequence has ended’)

9

B. Github
All software written for YJSP’s avionics is open-sourced and available for contribution on the Yellow Jacket Space

Program Github, under GT Space.

Acknowledgments
In addition to the authors of this paper, there are many individuals who played a role in designing and implementing

the YJSP Avionics system. We would like to acknowledge those with substantial contributions, including Billy Ewles,
George Golden-Bankier, Rithvik Nagarajan, Andrew Carlisle, Renee Garg, Aparupa Brahma, Panya Bhinder, Patrick
Sliwinski, Madhawi Alharbi, Veronica Mok, Donald Bailie, Andrew Kim, Syon Gupta, Pratham Ingale, and Chandini
Kalidi.

10

https://github.com/gt-space
https://github.com/gt-space

	Introduction
	Proposed System Overview
	Helluva Engine Test Stand
	Darcy Space: Nitrous Oxide and IPA
	Vespula

	Software Implementation
	Flight Computer
	Control Server
	Graphical User Interface (GUI)

	Conclusion
	Appendix
	An Example of a Sequence
	Github

