
3D Off-road Terrain Mapping for Autonomous Ground Vehicle
Energy-Optimal Path Planning

Matt Nguyen∗

University of North Carolina at Charlotte, Charlotte, NC, 28223

Navigating unknown terrain may be difficult due to unstructured paths, obstacles, and
inconsistencies in ground properties. This paper examines the challenge of creating a local
terrain elevation map from GPS measurements collected by an autonomous ground vehicle
(AGV) to enhance navigation efficiency. A methodology is developed that enables the Clearpath
Jackal AGV to gather onboard sensor data to be visualized and interpolated into a digital
elevation map. In this way, prior data obtained while traversing the terrain of interest is used to
inform the planning of future paths. The platform was configured to collect IMU, gyroscope,
and GPS data using the Robot Operating System (ROS). An automated data processing pipeline
was developed to convert raw data into readable formats (e.g., CSV tables), filter out irrelevant
information, and organize the data efficiently to reduce computational overhead. The path
traversed by the AGV was then reconstructed, and a linear regression model was used to
interpolate between GPS points to create a 3D map of the terrain. An energy-optimal path
planner based on A* was then developed by defining a cost function between nodes related to
changes in terrain height and a planar distance heuristic to improve efficiency. Our approach
demonstrated that the AGV could successfully avoid steep terrain and find paths around difficult
areas rather than attempting to traverse them directly. Two methods for sampling the terrain to
form a roadmap for planning were evaluated and compared – gridded sampling and random
sampling. Simulated energy optimal paths over the experimentally determined elevation model
are used to illustrate the approach.

I. Nomenclature

AGV = autonomous ground vehicle
GPS = global positioning system
GNSS = global navigation satellite system
IMU = inertial measurement unit
RRT = rapidly exploring Random trees
LiDAR = light detection and ranging
ROS = robot operating system
𝑌 = northing distance between nodes
𝑋 = easting distance between nodes
𝛼 = parameter reflects energy’s importance in our optimal path
𝜃 = latitude
𝜆 = longitude
ℎ = altitude
G = graph model
𝑤 𝑗 = barycentric weight of a set of nodes
𝑦𝑞 = interpolated result
𝑓 (·) = cost function
𝑔(·) = cost from node to goal
ℎ(·) = heuristic estimation
𝐷 (·) = distance between vertices
𝐶 (·) = actual cost associated with the edges between vertices
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II. Introduction

Autonomous ground vehicles (AGVs) are widely used to explore areas that are too dangerous or difficult for humans
to reach, like the surface of other planets [1] and underground mines [2]. AGVs also have applications in working

alongside humans in outdoor rugged terrain for military, scientific, and commercial applications [3]. Standard ground
vehicle missions include helping carry gear and instrumentation, retrieving samples, and recording footage to gain more
insight into areas of interest. To improve the efficiency and robustness of AGVs performing such tasks, it is essential
to consider factors such as terrain elevation and slope and their impact on vehicle stability, performance, and power
consumption. Path planning for AGVs typically considers 2D maps of the environment where the straight path is the
shortest. A short deployment of the robot in an unknown environment can provide a prediction of the environment’s
geometry properties through data collected with onboard sensors. This estimation formulates a 3D path planning
problem for the robot for future navigation to a random location within the range mentioned earlier. The optimal
path-finding problem can be solved using the A-star algorithm [4]. Performance can be justified by calculating the
properties of simulated terrain, such as distance and elevation.

This paper is organized as follows. Section III describes the data-collecting process and formulates the path-planning
problem. Section IV outlines the equipment utilized, the procedures for processing raw data, the methods for estimation
and sampling, as well as the strategies for optimal pathfinding. Finally, the paper will conclude with the results and
perspective for future work in SectionV.

(a) An AGV detects landmines, reducing injury risks and
enhancing safety in affected areas. [5]

(b) NASA Curiosity rover used for planetary exploration
and collecting samples on Mars.[6]

Fig. 1 Example applications of AGVs.

A. Related Work
Traversability is crucial in determining whether ground vehicles can deploy on a mission successfully. Each terrain

type has its unique characteristics, which can be unpredictable and unstructured, making the approximation process more
challenging. Previous research has addressed this issue by categorizing different terrains into familiar classifications,
such as gravel, dust, mud, and others [7]. This classification allows robots to adapt to their environments while humans
can adjust the vehicles to enhance their performance. The classification process can be carried out using various data
collection methods. In [8], the authors use accurate locomotion data for deployment to capture the robot’s surrounding
environment and analyze different robot performances based on the collected data. By emitting light beams around
the robot, LiDAR technology captures the three-dimensional shape of the surrounding area. This data can create a
map and assess traversability, as demonstrated in [9] and [10]. Data collection is followed by estimation using several
techniques. Standard methods include interpolation, Monte Carlo methods [11], and Gaussian estimation [12]. More
recent approaches involving machine learning require substantial processing power and data storage to determine
whether a path is traversable or non-traversable [13].

Pathfinding involves exploring practical ways to navigate terrain optimally, allowing robots to move through
environments similarly to how humans use logic or imagination before executing actions. Robots can replicate this
process using computing and algorithms. Optimal path planning has been around since the early days of robotics, with
established methods such as Dĳkstra’s algorithm [14], the A* algorithm [4], and the more recent Rapidly Exploring
Random Trees (RRT) algorithm [15]. These methods have built a foundation for controlling and optimizing robots,
leading to much more involved research in much specialized applications or areas of robotics. For instance, Truong and
Hong utilized the A* algorithm to find the optimal path in a 3D environment based on a known map [16]. Dĳkstra’s
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algorithm has been employed to consider distance, traceability, and power consumption factors when determining the
path from a start to a goal position through challenging terrain [17]. In addition, new methods for pathfinding are
being explored, indicating promising advancements in the field. Another study [18] implemented an Ant Optimization
algorithm combined with stereo cameras to identify the most efficient route. Furthermore, an approach using actuator
space involves adjusting the path by utilizing various steering angles instead of relying solely on kinematics [19].

III. Problem Formulation
This section outlines the problem of optimizing pathfinding by first introducing related concepts such as graph

theory and optimal path planning. It also describes some of the challenges in making the pipeline capable of finding the
optimal path from real-world data and setting a goal for our solutions.

A. Graph Theory
A graph 𝐺 is defined as a set of nodes (or vertices), represented by 𝑛𝑖 , and a set of edges represented by 𝑒𝑖 𝑗 [4]. The

nodes can be considered locations or points within a structure, while the edges represent the relationship between them.
In a three-dimensional (3D) graph, each node corresponds to a point in space and is described by Cartesian coordinates.
Specifically, each node 𝑛𝑖 has a location represented as 𝑛𝑖 = (𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖) where 𝑛𝑖 ∈ R3, uniquely defined its position
in 3D space. The edges 𝑒𝑖 𝑗 = (𝑛𝑖 , 𝑛 𝑗 ) represent the connection between node 𝑛𝑖 and node 𝑛 𝑗 ,and can be associated
with a cost 𝑐ij, such as the Euclidean distance between them. This representation of nodes and edges allows us to apply
our cost function to quantify the relationships between nodes. This information is crucial for running the pathfinding
algorithm, whose accuracy largely depends on the output of the cost function.

B. 3D Path Planning
A path is defined as a sequence of nodes from 𝑛𝑠 to 𝑛𝑘 that are connected. The smallest quantitative unit of a path is

the edge. When planning, there will be many paths between the two points of interest, the start node 𝑛𝑠 and the goal
node 𝑛𝑔. The optimal path is the path with the minimum cost that fits all the predetermined constraints. While 2D path
planning only involves the cost of the distance between two points on a flat surface, we argue that it becomes more
complex when analyzing the cost between points in a 3D graph, where efficiency and traversability play crucial roles in
determining the optimal path. It might be trivial to measure the robot’s power consumption directly from the internal
electronic system as cost. Although it is possible, this might not yield an accurate result since power consumption
involves both computing power and mechanical power that helps move the robot. In this paper, we are interested in
finding a path that is not only short but also minimizes the mechanical power consumption required for the robot to
move from 𝑛𝑆 to 𝑛𝐺 on our map.

C. Data Collection
Our data is collected from recordings captured through the robot data collection protocol in ROS, known as rosbag.

These recordings contain a dataset of interest, taken at discrete time intervals while the robot operates in an unknown
environment. We aim to analyze and formulate this data into a format that can be further processed and optimized
before running it through an optimization path planning algorithm. Currently, this approach is done manually in
post-processing, but our long term objective is to automate this process, allowing the robot to handle it in real time.
Looking at the data, the original GPS data from the robot should be in the form of

𝑅 = (𝜃, 𝜆, ℎ) , (1)

where 𝜃 is the latitude, 𝜆 is the longitude, and ℎ is the altitude.
In our problem, graph 𝐺 is not readily available for path planning. Instead, we have a set of data points representing

the robot’s path, referred to as the base path, at the location of interest. Our objective is to construct a virtual map using
data collected from the Jackal as it randomly traverses the terrain.

D. Problem Statement
The problem of finding the optimal path can be divided into two distinct challenges. First, we must find a way to

convert raw data into a 3D model terrain, which is essential for applying any path-finding algorithm. Our priority is to
minimize deployment time and resources, which results in the constraints in length and time of the robot base path. Our
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estimation process should guarantee interpolating the original path into an area map while conveying enough detail
about the physical characteristics of the terrain. The next problem is finding fast and accurate solutions to this map.
This process requires developing an efficient sampling approach to generate nodes along the map. The goal is to select
the pathfinding algorithm capable of quickly and accurately solving the optimal route from the start to the goal nodes.

Fig. 2 Google satellite image of the terrain for which experimental tests were conducted.

IV. Methodology
This section first describes the equipment used in the proposed method for data collection (Section IV.A). The

collected data is analyzed in Section IV.B and interpolated in Section IV.C to create an estimated digital elevation map.
Sampling methods from Section IV.E are then applied to acquire the terrain graph. Finally, The A* algorithm with the
developed cost function in IV.D is applied to the sampling graph 𝐺, delivering the optimal path to reach the goal node.

A. Equipments
Clear Path Robotics developed Jackal as an autonomous robot platform designed for research applications. It is a

compact, durable, versatile, and customizable AGV with a robust 4x4 chassis and is made from high-grade aluminum.
Jackal is rated IP62 for weather resistance and has insulated connections to ensure optimal performance in various
environments. The wide platform, measuring 508 mm in length and 430 mm in width, provides plenty of space
for mounting accessories. It offers 5 V, 1 V, and 24 V power options and features an onboard computer connection
port suitable for various types of sensors [20]. The robot’s high-performance Ubuntu computer can handle complex

Fig. 3 Jackal AGV from Clear Path Robotics used in this research.

processing tasks. It also supports synchronization with ROS, the RViz control interface, and Gazebo simulation.
Additionally, the Jackal offers various connectivity options, including Bluetooth and Wi-Fi, providing multiple ways to
access and control the robot. The primary sensor used in this project is the Swift Navigation Duro GPS sensor, which is
built into the robot. This sensor is a robust and durable GNSS device designed to operate across multiple frequencies
and constellations., utilizing cutting-edge technology to deliver accurate positioning. This sensor is a perfect fit for
ground robot application, which requires reliable and precise location data in a challenging environment [21].

The Robot Operating System (ROS) is a well-developed framework wildly used across various robotic platforms
today. ROS is a Linux-based system that supports numerous robotic tasks, including the development and control of
robots. Our Jackal robot operates on ROS Noetic, the latest version of ROS 1. This system facilitates robot control and
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real-time data collection from various sensors, as detailed in the hardware section above. Such capabilities provide a
convenient means of extracting data for analysis.

B. Data Analysis and Preparation
Data are taken from the robot in the form of a ROS bag and built-in extraction functions to generate CSV files

containing data stored at discrete time intervals, ensuring the capture of all the information of every activity on the
robot system with high precision. The geographic coordinates 𝑅 are extracted from these files for further analysis.
These bag files are generally very disk space-intensive. Processing them can significantly slow down the analysis,
although it is necessary to track the robot’s traversal time precisely. Upon reviewing the generated CSV file, we
noticed repeated data over specific periods, as if the robot were stationary. This indicates a mismatch between the high
frequency of the collected data and the movement of the robot. The cause of this issue is that the data sampling rate
𝑇 was faster than the sampling rate Δ𝑆 of the GPS data. This issue is resolved by removing duplicated data points
from the original file, leaving all unique data points continuous through the traversing of the robot through the terrain.
The result was impressive, our test CSV file was reduced from 7243 items to only 716 items. This could potentially
pose a significant improvement in the data processing time and computing resources of our robot. Having optimized
data with meaningful points, it would be necessary to convert geographic coordinates (latitude, longitude, altitude) to
Universal Transverse Mercator (UTM) [22] coordinates for precise spatial analysis. This process involves transforming
the spherical coordinates into a Cartesian coordinate system, accounting for the Earth’s curvature through a suitable map
projection. UTM coordinates are a well-known coordinate system that includes three main components: easting (𝑥),
northing (𝑦), and altitude (𝑧). This conversion maps the data into a planar coordinate system, which is highly versatile
for modeling the terrain. This model can then be used to visualize the process and perform calculations based on the
terrain representation.

C. Graph Estimation
Running the robot extensively along the terrain can help cover many details that can be effectively used to build

maps. However, this process is generally not feasible since it is work-intensive and consumes endless deploying time,
computing resources, and storage, which is not available. Estimation can be a good solution to this problem with the
data of the based path. The general estimation idea involves generating additional data points by leveraging the known
relationship between two or more existing points while adhering to predetermined constraints. This paper uses linear
barycentric interpolation for its simplicity and wide practical applications. Linear barycentric interpolation is a widely
used method for curve fitting that estimates unknown points from a set of known points. The technique is grounded in
the principle of linearity, which assumes that the change in the known point of addiction is a straight line. The algorithm
first performs Delaunay triangulation from the base path data to prepare for the next step and reduce interpolation error
[23]. From the point 𝑞 located inside each triangular node 𝑛1, 𝑛2, 𝑛𝑑+1, using the inverse to a power to compute the
weighted average to determine the barycentric weight of them 𝑤𝑖 [24]

𝑤 𝑗 =
1∑𝑑+1

𝑖=1 (𝑥 − 𝑥𝑖)
given

𝑑+1∑︁
𝑖=1

𝑤𝑖 = 1 , (2)

From there, 𝑦𝑞 can be interpolated using linear interpolation formulas

𝑦𝑞 =

𝑑+1∑︁
𝑖=1

𝑤𝑖𝑦𝑖 , (3)

where 𝑦𝑖 represents the known values at the vertices 𝑥𝑖 of the simplex surrounding the point 𝑥𝑞 and 𝑑 is the dimension
of the space under consideration. In this case 𝑑 is set to two because 3D data is being considered. Method linearly
connects all the known points to create a mesh representing the behavior and trends of the data set. When new points
are added to the existing mesh, a line segment is formed between each pair of adjacent data points to estimate the
intermediate values. This process makes the new points valuable additions to the mesh and updates it accordingly.

The result interpolation from our data set successfully creates a 3D map of the terrain, restricted by the closest point
on each axis, as seen in Figure 4. The color represents the attitude of the terrain, with darker color meaning a lower
attitude.
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Fig. 4 3D terrain map interpolated from collected data of the based path (blue).

D. Cost Function and Weight Estimation
Cost is the critical factor that justifies the performance of a path-finding algorithm, especially considering the

constraints of robotic systems in real-world environments. Our cost function is designed to account for the distance
traveled and the energy the robot consumes as it moves through varying terrain. Given that the robot’s battery is limited
to 2 hours (according to Jackal’s specifications), this constraint plays a crucial role in shaping the cost function to
prioritize energy-efficient pathfinding. To calculate the distance traveled, we employ the 2D Pythagorean theorem to
determine the distance between nodes 𝑛𝑖 and 𝑛 𝑗 , based on their 𝑥 and 𝑦 coordinates. The distance function is given by:

𝐷 (𝑛𝑖 , 𝑛 𝑗 ) =
√︃
(𝑥 𝑗 − 𝑥𝑖)2 + (𝑦 𝑗 − 𝑦𝑖)2 . (4)

We also account for terrain inclination, an essential factor in estimating power consumption. Steep terrain requires
more energy to overcome gravitational forces and slippage. However, we must ensure that the cost function handles
situations where nodes at lower elevations could generate negative power consumption if the goal node 𝑛𝐺 is higher
than the start node 𝑛𝑆 . To address this issue, we designed an energy cost function based on an exponential model, where
energy consumption increases non-linearly with distance. This approach better reflects the increasing difficulty of
movement over steeper terrain and ensures the cost accurately represents the robot’s energy usage without violating
physical principles.

𝐶 (𝑛𝑖 , 𝑛 𝑗 ) =
(
1 + exp(𝛼 · ΔAltitude (𝑛𝑖 , 𝑛 𝑗 ))

)
· 𝐷 (𝑛𝑖 , 𝑛 𝑗 ) , (5)

where 𝛼 is a constant representing the significance of terrain elevation to the cost, ΔAltitude is the change in altitude
between two nodes, and 𝐷 is the 2D distance between nodes.

E. Scatter Sampling Approaches
Constrained random point sampling: The first proposal allows us to determine nodes on 𝐺 and randomly generate

a certain number of nodes distributed across the surface of the generated terrain model. The total number of nodes
is determined by a preset maximum number of sampling points required for our analysis. Note that the larger the
sample size, the more accurate and defined the path we can get. Each three-dimensional node from the sample will
occupy a unique position within the graph, representing a traversable point. The constraints for these points are defined
as 𝑥𝑖 ∈ (𝑥min, 𝑥max), 𝑦𝑖 ∈ (𝑦min, 𝑦max), and 𝑧𝑖 is derived as an interpolation of 𝑥 and 𝑦, constrained within the range
(𝑧min, 𝑧max). The random points are generated using a uniform distribution across the graph, ensuring an even spread of
nodes that reflect the traversable areas of the environment. This method allows us to create a robust representation of the
terrain in a graph form, which can be further refined in subsequent steps of the path process.

Uniform Grid Point Distribution: Another strategy for generating nodes in our graph is to divide the surface into
a uniform grid of small rectangular segments, creating a set of grid cells 𝑄 that cover the entire graph area. Each
segment 𝑄i is designed to have approximately equal area, ensuring a balanced distribution of potential path points.
Since each rectangular segment has four corners, we designate each corner as a candidate for optimal path points. This
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method allows us to systematically sample the environment, ensuring no significant area is left unrepresented in our
node generation. The uniform grid point distribution approach offers several advantages, including improved coverage
of the graph and the ability to maintain consistent spacing between potential nodes. This strategy can facilitate more
efficient path-finding algorithms, as it reduces the likelihood of missing critical traversal points. Additionally, the
structured nature of the grid simplifies the analysis of connectivity and distance between nodes, further enhancing our
path-planning capabilities.
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(a) Randomly sample points along the terrain curvature.
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(b) Sampling points along the grid lines.

Fig. 5 Two sampling approach visualization.

F. A* Path Planning Algorithm
A* (A-star) is a path-finding algorithm renowned for its efficiency and ease of use. It is an enhanced version of

Dĳkstra’s algorithm, designed to reduce the time and computational resources required to find the shortest path. Unlike
Dĳkstra’s algorithm, which exhaustively explores all nodes in the search space to determine the optimal path, A* uses
heuristics to estimate the direction towards the goal. This heuristic approach allows A* to focus on the most promising
nodes and avoid irrelevant portions of the search space, thereby improving efficiency 6.

In this paper, A* employs a cost function to prioritize the nodes that are most likely to lead to the optimal path.

𝑓 (𝑛) = 𝑔(𝑛) + ℎ(𝑛) (6)

where 𝑓 (𝑛) represents the total estimated cost, 𝑔(𝑛) is the actual cost from node n to the goal, and ℎ(𝑛) is the heuristic
estimation of the cost from node n to the goal.
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Fig. 6 A* algorithm graph visualization.

The version of the A* algorithm developed in this paper is described in Algorithm 1. This algorithm takes a set of
nodes 𝑄, sampled along the terrain surface, a start node 𝑛𝑠 , and a goal node 𝑛𝑔, and returns the optimal path, which is a
set of nodes that connect the start and the goal. Initially, the cost of 𝑛𝑠 is set to 0, while 𝑛𝑔 is marked with infinite cost
(lines 1-2). The set N of neighbors for each node in 𝑄 is determined based on the Euclidean distance constraint 𝐷max
(lines 4-13), where the algorithm checks the distance between each node and adds it to the neighbor set if the distance is
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Algorithm 1 Terrain-Aware A*
function: TerrainA wareA*(𝑄, 𝑛𝑠 , 𝑛𝑔)
input: sampled vertices 𝑄, start node 𝑛𝑠 , goal node 𝑛𝑔
output: Optimal path (a set of nodes)

1: 𝑄 ← 𝑄𝑖 ∪ {𝑛𝑠 , cost = 0}
2: 𝑄 ← 𝑄𝑖 ∪ {𝑛𝑔, cost = ∞}
3: N ← ∅
4: for 𝑛 𝑗 ∈ 𝑄 do
5: N𝑗 ← ∅
6: for 𝑛𝑖 ∈ 𝑄 do
7: 𝐷 ←

√︃
(𝑥 𝑗 − 𝑥𝑖)2 + (𝑦 𝑗 − 𝑦𝑖)2

8: if 𝐷 ≤ 𝐷max then
9: N𝑗 ← N𝑗 ∪ {𝑛𝑖}

10: end if
11: end for
12: N ← N ∪N𝑗

13: end for
14: open← heuristic(𝑛𝑠 , 𝑛𝑔)
15: Parents← ∅
16: while open ≠ ∅ do
17: sort(open)
18: current← first(open)
19: if current = 𝑛𝑔 then
20: final← parents
21: end if
22: for child ∈ Ncurrent do
23: totalCost← cost(current, child) + cost(start, current) + heuristic(current, goal)
24: if totalCost < cost(start, child) then
25: child(cost)← totalCost
26: parents(child)← current
27: if child ∉ open then
28: open← open ∪ child
29: end if
30: end if
31: end for
32: end while
33: 𝑛𝑐 ← 𝑔𝑜𝑎𝑙

34: path← ∅
35: while 𝑛𝑐 ∈ parents do
36: path← path ∪ 𝑛𝑐
37: 𝑛𝑐 ← 𝑝𝑎𝑟𝑒𝑛𝑡𝑠(𝑛𝑐)
38: end while
39: optimal Path← reverse(path)

less than or equal to 𝐷max (lines 7-9). The pathfinding algorithm then proceeds by examining the lowest-cost node in
the open set, which has the potential to be the next node in the optimal path (lines 14-18). For each node currently being
considered, referred to as 𝑐𝑢𝑟𝑟𝑒𝑛𝑡, all its neighbors (children) are evaluated by calculating the total cost, which is the
sum of the cost to reach the neighbor from the start node, the cost to reach 𝑐𝑢𝑟𝑟𝑒𝑛𝑡, and the heuristic cost from the
neighbor to the goal (line 23). If the total cost to reach a neighbor is lower than its current known cost, the neighbor’s
cost is updated to the lower value (lines 24-26). The 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 node is then assigned as the parent of the neighbor node,
and the neighbor node is added to the open set if it is not already present (lines 27-29). The algorithm continues by
examining the neighbors of the next lowest-cost node in the open set until the current node equals the goal node (line
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20). Once the goal is reached, the algorithm reconstructs the optimal path by tracing back from the goal to the start node
using the 𝑝𝑎𝑟𝑒𝑛𝑡𝑠 set (lines 33-39).

V. Results
The algorithm successfully searched for the optimal path to traverse through our terrain from the curve-fitted graph

with data points along its surface. The distance is treated as equal weight with the energy, which sets the value of 𝛼 in
the (5) to have the value of 1. The method yields similar results in different runs, which poses the consistency in our
path-finding approach. However, when considering the two sampling methods, there are some variations in the output
and performances.

A. Comparing The Two Sampling Approaches
Figure 7 illustrated the total cost and runtime at different sample sizes for the gridded points sampling and randomized

points sampling, respectively. Data was collected at a predetermined number of sampling points. Through experiment,
the shortest path can only be found with a sampling size larger than 100 points. To minimize redundancy, our minimum
sampling size started at 200 points and doubled until it reached 3200 points, which is estimated to be the convergence
threshold. A larger sample would not result in a much smaller cost for the shortest path rather than consuming more
computing power and taking longer. Overall, both methods showed the same trends in the price of the shortest path
as the number of points increased. As the larger sample size was above 1500, there was a slight increase in the total
cost of the fastest route in the gridded sample case. This increment trend results from over-sampling where points
overlapped, causing less precise results. The run time in both methods increased linearly with sample size. However,
while the randomized approach tends to be faster at smaller sample sizes, the gridded strategy proved to be almost three
times faster than the randomized when more points are introduced to the map. From observation, with the interest of
minimizing computing time and maximizing accuracy, a sample size of 1000, used for later analysis, is considered to set
our scale to approximately balanced.
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(a) Gridded points sampling results.
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(b) Randomized points sampling results.

Fig. 7 Performance of the algorithm with different sampling approaches.

B. Path Found Discussion
Distance-wise, the shortest path is the straight path from start to destination note, assuming no obstacle exists. To

ensure this condition is also applied to our method as expected when energy is not considered, the exponential term in
(5) will be removed before running the algorithm, leaving only the value 𝐷 to be considered when finding the best path.
Figure 8a represents our check; the red line with nodes along it is the shortest path found, while the black line is the
reference path of a straight line from the start to the goal node when fitted into the terrain. When comparing the two
paths, the path found by the algorithm is very close to the straight line, which aligns with our assumption. The variation
is due to variation in node location, which is approximately close but does not exist in the combination of nodes that
lay precisely on top of the straight line. Rerunning the algorithm on the same sample with energy is considered by
reintroducing the exponential term in our cost function and choosing 𝛼 = 1 to represent the importance of altitude in the
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optimal path found. The result is shown in Figure 8b. Regarding distance, the algorithm did not pick the shortest path,
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(a) Path-finding without considering energy in the cost func-
tion.
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(b) The path found from the gridded sampling approach
with consideration of energy.

Fig. 8 Path finding results.

the straight line from start to end. This was expected because, as mentioned earlier, our algorithm does not always
prioritize the shortest route, but rather the most efficient way to reach the goal while conserving as much battery as
possible. The solution path followed a similar trend to the straight line, but with more curvature. This result reflects the
characteristic of the optimal route, which avoids going straight uphill to minimize the robot’s climbing effort. Instead,
the algorithm finds it more efficient to traverse steep areas of the terrain.

VI. Conclusion and Future Work
The graph image of the curve-fitted data defines the characteristics of the real-world terrain that the robot has

autonomously traversed. Our optimized data reduction approach makes the computation time from raw data to a 3D
terrain map instantaneous. The method presents a promising solution for on-board computer and mapping of robots,
allowing path planning directly on the robot at any time. As a result, it can enhance the robot’s efficiency, increasing
battery life and operation time for each mission.

Follow-up work may involve fusing additional data sources into the terrain mapping algorithm to enhance accuracy.
Sensors such as IMU and LiDAR create data layers that can be more precise than GPS alone. The map may also encode
battery energy consumption, terrain type, and obstacles. The ultimate goal is to enable the robot to perform the mapping
and path-planning tasks autonomously in real-time.
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