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This study aimed to develop hardware and software for an object detection fusion system, 

using three different sensors. The system’s performance was compared to that of individual 

sensors deployed for the same task. The focus of the research was to prove the competence 

and benefits of a decision-level fusion method as it was applied to lightweight object detection 

architectures, and the driving motivators behind the study were simplicity in implementation 

and good computational performance. In short, the algorithm would use lightweight models 

to perform object detection on the sensors individually, and then the detection coordinates 

would be transformed into the same coordinate planes for correlation. The method exploited 

sensor calibration and depth images to create an efficient workflow. Once the algorithm was 

created, it was tested and compared both qualitatively and quantitatively to individual models 

deployed on the same sensors with no fusion framework. Qualitative results clearly indicated 

that the fusion algorithm outperformed individual models in more challenging scenarios. The 

quantitative results indicated the same trend, but it was also clear that inaccuracies in the 

fusion methodology resulted in a small percentage of the true detections being missed when 

they were otherwise caught by individual models. Future work should consider investigating 

the deployment of the fusion algorithm on small devices, because the lightweight models were 

intended for mobile deployments. Other possible work should study the effect of improved 

extrinsic calibration, better-trained models, semantic segmentation models overlayed for 

improved depth resolution, and adding adaptability to the algorithm’s decision-making 

process for different scenarios. 

I. Nomenclature 

K = intrinsic camera parameter matrix 

𝑟 = position vector 

R = rotation matrix 

T = translation vector 

u = horizontal coordinate in a sensor’s pixel coordinate system 

v = vertical coordinate in a sensor’s pixel coordinate system 

z = depth coordinate in a sensor’s pixel coordinate system 

II. Introduction 

 Sensor systems are essential for a variety of aerospace applications. Vehicles such as drones, airplanes, and 

satellites are outfitted with arrays of sensors that collect data, and one of the most common sensor tasks is perceiving 

the surrounding environment. Commonly used sensors for this task include cameras, radars, and LiDAR sensors (Light 

Detection and Ranging). Advancements in AI and machine learning have made the use of object detection methods in 

camera systems conventional. Object detection is a subset of machine learning in which models are trained to detect, 

identify, and locate objects of interest in images. The models place bounding boxes around the objects and label them. 

Such models would prove useful when deployed on cameras. 
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 Consider the following scenario: if an autonomous drone was deployed in a crisis response situation to search for 

people, would a single camera provide enough information and confidence if an object detection model indicated that 

a person was spotted? The answer, in many situations, is no. There would be several scenarios in which a simple 

webcam (RGB camera) would be useless. If it was dark, or foggy, or if the drone was in an urban environment with 

people projected on screens and mannequins standing in windows, the object detection model deployed on the webcam 

would either miss detections of people or mistake an object for a real human. 

 Therefore, it becomes apparent that a combination of sensors with different strengths would be required to 

complete this task in more challenging scenarios. Making use of data from different modalities is an active area of 

research in several disciplines, termed data fusion. The research detailed in this paper aimed to develop a sensor 

system, both by assembling hardware and software, that would deploy lightweight object detection models in a 

decision-level fusion framework to address the person-detection scenario explained previously. Three sensors were 

used: a LiDAR sensor, a thermal camera, and a webcam. Prior to explaining the method of fusion and how this research 

expands upon the body of research, a short survey of relevant work will be presented next. 

 Several investigations have recently been conducted regarding the fusion of LiDAR sensors and cameras for object 

detection applications. One study used a 2-D LiDAR sensor with 360° range and a webcam [1]. Object detections 

from the webcam were fused with distance/angle data from the LiDAR sensor. The authors of the study recommended 

using geometric projections and transformations to make the fusion more accurate. Another study performed extrinsic 

calibration between a thermal camera and a LiDAR sensor so that points from the LiDAR’s 3-D point cloud could be 

projected onto the thermal images, adding a second layer of useful data to the images [2]. Some work has also 

considered fusing camera images and depth images from LiDAR sensors together by using convolution layers in a 

neural network [3]. A more general survey of current research on LiDAR and camera fusion has been conducted, too 

[4]. Some of the discussed methods include depth completion, 3-D object detection, 2-D/3-D semantic segmentation, 

and 3-D object tracking. Another similar study used an altered version of Faster R-CNN to perform a non-maximum 

suppression algorithm on bounding box detections from thermal and depth images [5]. 

 The method of fusion presented in this paper draws similar elements from the listed studies. The LiDAR sensor 

and both cameras were calibrated intrinsically and extrinsically to allow for projection of points between the sensors. 

Additionally, LiDAR depth images were used instead of point clouds. However, instead of overlaying the three images 

together or addressing a more complex task such as 3-D object detection or semantic segmentation, the sensor fusion 

method purely considered the transformation and projection of 2-D bounding box detections between the sensors. To 

reduce complexity even further, the only detections to be transformed would be from the LiDAR depth images, 

removing the need for stereo vision techniques. 

 In short, the core fusion methodology was as follows: given three images from the LiDAR sensor and the two 

cameras, object detection models trained on the individual sensors would perform detection individually. Next, the 

bounding boxes on the LiDAR depth image would be transformed into the webcam and thermal reference frames, 

separately. The boxes were transformed from the depth images by creating 3-D position vectors out of the bounding 

box corners. Depth information was taken at the centers of the boxes, hopefully aligning the boxes with the detections 

(people) in 3-D space. After that, a decision-level fusion process was used to correlate detections and decide which 

detections to keep and throw out. 

 This methodology was investigated primarily to assess how effective the framework would be at the given task. If 

effectiveness was proven when compared against individual sensor detections, then the benefit of the method would 

include its simplicity, ease of use, efficiency, and lightweight nature. The method of fusion avoided the complex areas 

of current research and instead focused on proving the utility of calibration and depth images for 2-D object detection. 

The object detection models that were trained and deployed used the MobileNet CNN architecture from the 

TensorFlow Lite library, further emphasizing the goal of developing a lightweight system. The intention was for such 

a system to be easily deployable by casual users on smaller systems, such as embedded computers on an autonomous 

drone. The combination of three sensing modalities, extremely lightweight models, and the bounding box correlation 

method is what distinguishes this study from the existing body of research. For more information about the project, 

please visit the project website [6]. 

 The rest of the paper will be structured as follows: the development of the sensor system and performance 

assessment methods will be explained, observations and quantitative data will be presented, discussion will be 

provided on the results and possible future work, and conclusions will be drawn. 

III. Methodology 

This section will describe the physical setup of the sensor system, the sensor calibration process, data acquisition, 

model training, fusion workflow methodology, and performance assessment methodology. 
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A. Hardware Setup 

 For reference, the sensors used for the research were the following: a Logitech Brio 101 Webcam [7, 8], a pmd 

flexx2 LiDAR sensor [9-11], and the Teledyne FLIR Lepton Micro Thermal Imaging Core [12, 13]. They were 

attached to a custom fabricated mount where the sensors’ relative positions could be kept approximately constant. A 

multi-USB port adapter was included on the back of the mount to provide a connection point for all sensors. A diagram 

of the sensor mount is given next in Fig. 1. 

 

 
Fig. 1 Sensor Mount Diagram. 

 

 The mount also required the PureThermal 3 breakout board [14], used to house the thermal sensor and provide a 

USB connection to it. Prior to the calibration process, the mount was further secured so that the sensors would be 

unable to move relative to each other, and that configuration is shown in the section on data acquisition. With the 

sensor mount physically set up, the three sensors were connected through USB to a Windows 11 laptop. 

 For the virtual setup of the sensor array in a development environment, the three USB connections were bridged 

to the Windows Subsystem for Linux (WSL) with an Ubuntu installation on the laptop. The default WSL environment 

had settings disabled that blocked the passthrough of certain USB connections from the Windows environment to 

WSL, so a custom Linux kernel for WSL was built [15]. 

B. Software Setup 

The sensors were passed into the WSL environment for two reasons. The first is because Robot Operating System 

2 (ROS2), which works well in a Linux environment, was chosen as the framework for sensor deployment and 

processing [16, 17]. The second is that the software installation for the LiDAR sensor only worked in Linux. 

Next, a containerized environment using Docker and Visual Studio Code was built to house the drivers for the 

three sensors and the ROS2 framework. The sensors were initialized in the environment using ROS2 GitHub 

repositories: one for USB cameras [18], another specifically for the LiDAR sensor [19], and one final repository for 

image processing [20]. This configuration, when linked to GitHub, would allow for efficient collaboration and sharing 

of work given that the appropriate Linux kernel was built and the LiDAR sensor software installed on a separate 

machine. The ROS2 environment was thus configured to handle image data streamed from the three sensors at the 

same time. 

C. Calibration 

With the sensors initialized in the virtual environment, two elements would be required to enable the detection 

fusion workflow: image synchronization and sensor calibration. Synchronization was required because the images 

from the three sensors would provide useless information for fusion if they were not capturing the same approximate 

moment in time. The ROS2 environment provided embedded tools for image synchronization, so this solution was 

simple. However, regarding the second element, all sensors in the mount needed to be calibrated to ensure accurate 

transformations of points between sensor coordinate systems. Although ROS2 provided tools for sensor calibration, 

the process was not trivial. 

To provide some context, the primary method for the detection fusion workflow would be to take a data point 

(pixel) from the LiDAR image, convert that point to a 3-D position vector expressed in the LiDAR’s reference frame, 

and then transform that vector into the pixel coordinate frames of the webcam and thermal sensor. These 
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transformations would require two things: the intrinsic camera parameter matrices for all three individual sensors, and 

the extrinsic calibration matrices for translations and rotations between the sensors. Additionally, parameters for 

camera distortion would be required. 

The intrinsic matrices are used for transforming between the pixel coordinate systems and the 3-D sensor frames 

on individual sensors. They require the focal length, horizontal and vertical pixel sizes, and the sensor’s principal 

point. The principal point is defined as the point, expressed in units of pixels, in the center of the image. The pixel 

coordinate system is defined with the origin at the top left corner of the image, and the exact center of the image may 

not be exactly half the image resolution due to distortion. Thus, the principal point may not always be perfectly in the 

center of the given resolution. 

The extrinsic matrices provide transformations between the different sensors. They contain a rotation matrix for 

aligning sensor orientations, and they also contain a translation vector that resolves the two frames together in 3-D 

space. Lastly, the distortion parameters are used to yield undistorted images from the raw images, and the undistorted 

version of the sensor images are the ones used for the intrinsic transformations. 

ROS2 contains libraries with algorithms that converge to calibration solutions for intrinsic and extrinsic matrices, 

and those packages were used for the three sensors. The algorithms are derived from OpenCV’s implementation of 

Zhang’s calibration algorithm [21]. They require image streaming from the sensors viewing a calibration pattern, 

usually a checkerboard or an asymmetrical circular pattern. The algorithm would work by matching the predefined 

pattern configuration to pattern detections in real time, converging to the calibration solution after enough detections 

at varied distances and angles. 

The sensors would need to clearly see the pattern at the same time for extrinsic calibration to work. If individual 

intrinsic solutions were the only parameters required, the calibration pattern would have been much easier to choose. 

To form a pattern that the LiDAR, thermal sensor, and optical sensor could see, an asymmetrical circular pattern was 

chosen with the circles cut out of the board for the LiDAR to easily identify the circular holes. The board material was 

white, and the calibration was performed with a dark background so the webcam could see the contrast. Additionally, 

a heat gun was used on the board so that the thermal sensor could easily see the pattern. This setup was derived from 

the calibration work by Choi and Kim [2], and the physical calibration setup is shown in Fig. 2. 

The pattern was printed using a precision cutting machine, and tutorials were used for configuring the calibration 

library [22, 23]. During the initial calibration process, the results were far from what was expected, and it was found 

that the original asymmetrical circular pattern was symmetrical around the pattern’s center as seen in Fig. 2. The 

calibration algorithm was frequently recognizing the pattern as right-side-up when it was truly upside-down, greatly 

skewing the results. To fix the problem, one column on the right side of the pattern was covered up, and the resulting 

calibration solution was sufficient. Lastly, the translation parameters that were output from the algorithm were severely 

off. The inaccuracy only in the translation result could possibly be attributed to the fact that the sensors were placed 

so closely together. Manual translation measurements were taken between the sensors to supplement this. 

 

 
Fig. 2 Calibration Pattern. 

D. Data Acquisition 

Image data collection was carried out in a motion capture room to validate the future workflow results. The motion 

capture results were not critical for the research, and their results will not be addressed in this paper. However, the 

methodology taken for the motion capture will be explained, and the motion capture data will be shared [24]. To 

capture the location of the sensor mount, at least three motion capture markers needed to be attached to it as shown in 

Fig. 3. Likewise, all recorded objects of interest needed to be tracked. Markers were placed on the objects such that 
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their reflections back to the LiDAR sensor were minimized. Note that the motion tracking system employed the use 

of OptiTrack sensors [25] and Motive software [26]. 

 

 
Fig. 3 Motion Capture Setup. 

 

 The object detection models needed to be trained to detect people first, so training images were collected by having 

one team member move around in the sensor mount’s field of view for approximately 1 minute. Other training 

scenarios included one person sitting down, and a different person moving around upright. With a synchronized image 

collection time of about five images per second, each round of training data collection produced roughly 300 images. 

 Testing images were also gathered during the same session for assessing model performance and fusion algorithm 

performance. Different testing scenarios were recorded, including regular conditions like the training data. However, 

other scenarios were designed to exploit the weaknesses of the different sensors. 

 One scenario involved placing a “dummy” model of a person in front of the sensors. It was unable to stand upright, 

so it was seated in a chair. Training images of team members seated in a chair were also collected to compensate for 

the difference in posture and location of the seated dummy. Additionally, the authors dressed the dummy in clothes to 

help it look like the real people being recorded. This scenario was chosen because the models deployed on the webcam 

and LiDAR would probably identify the dummy as a human, but the model deployed on the thermal sensor would not 

recognize any heat signature. 

 Another scenario involved detecting people in the dark. All external light sources were blocked, and the lights in 

the motion capture studio were turned off to create total darkness. Then, a team member moved around in the sensor 

mount’s field of view for approximately 20 seconds to capture images. The models for the thermal and LiDAR sensors 

would detect a person, but the model on the webcam would see nothing. 

 The last scenario involved displaying an image of a human on a screen and recording the screen. The model on 

the webcam would probably detect a person; however, the models on the thermal and LiDAR sensors would only see 

a flat surface. In addition to the image data with regular conditions, an additional testing scenario in which two team 

members were moving around in the field of view was collected to see if the algorithm could detect multiple objects 

at the same time. 

E. Model Training 

With the image data from the three sensors acquired, object detection models were able to be synthesized from the 

training data. The images were loaded into Label Studio [27] for manual bounding box drawing around the objects of 

interest in the images. Because the goal of the project was to evaluate and compare model performance between the 

fusion workflow and individual models, it was not important to have robust models trained. Thus, the training and 

testing images were captured with the same background, same people, same clothes, same poses, and same sensor 

mount orientation. As a result, very few images were required to train object detection models that would be able to 

identify the people in the testing data. 

So, 75 images from the training data were chosen for training each of the three models: 25 images per training 

scenario (one person standing, the same person sitting, and a second person standing). Validation datasets were also 

created in Label Studio as required by the training process, and they contained 15 images each. Once the images were 

manually labeled, the datasets were exported in the COCO dataset format. After some small adjustments, the datasets 

were ready for model training. 

To train the models and deploy the models for object detection, the MediaPipe framework from Google was chosen 

[28]. Google’s team behind MediaPipe also provided a tutorial for data labeling and model training that was followed 
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[29]. The training script was written based on the tutorial [30], and each model was completely trained in less than 10 

minutes. It is important to note that the models were trained using the MobileNet architecture from TensorFlow Lite. 

The resulting models were notably lightweight, which was a central focus of the research. 

F. Fusion Workflow Methodology 

 With the object detection models trained, testing data acquired, and the sensor calibration completed, the detection 

fusion workflow was ready to be built. The workflow was developed in a virtual environment separate from the ROS2 

environment [31]; also, note that the ROS2 environment was used for algorithm deployment in real time [32, 33]. The 

full step-by-step process that the workflow followed will not be addressed in this paper, but it has been detailed in the 

main fusion workflow environment [31]. 

 Instead, in this section, the critical mathematical steps behind point transformations from the LiDAR sensor to the 

other two sensors will be presented. The rest of the workflow steps involved coding logic and decision-making based 

on confidence and box intersection thresholds, and the essential steps in that process will also be explained. 

 Given a pixel coordinate pair in the LiDAR image and the associated depth value at that pixel, denoted 𝑢𝑙, 𝑣𝑙 , and 

𝑧𝑙, respectively, the position vector of the point from the LiDAR’s camera frame is given by 

 

𝑟 = 𝑧𝑙 ∗ 𝐾𝑙
−1 [

𝑢𝑙
𝑣𝑙
1
],                    (1) 

 

where 𝐾𝑙  is the LiDAR camera’s intrinsic matrix. Note that the pixel coordinates were chosen to be the corners of the 

bounding boxes, and the depth values were chosen as the values at the centers of the bounding boxes which should 

match the depth of the person detected in the image. Next, the position vector can be extrinsically transformed into 

the other cameras’ reference frames by 

 

𝑟𝑠⃗⃗⃗ = 𝑅𝑐𝑠
−1𝑅𝑐𝑙𝑟 + 𝑇𝑠𝑙 ,               (2) 

 

where 𝑅𝑐𝑠 is the rotation matrix from the other sensor’s reference frame to a placeholder orientation given by the 

calibration, 𝑅𝑐𝑙 is the rotation matrix from the LiDAR sensor’s reference frame to the same placeholder orientation, 

and 𝑇𝑠𝑙  is the translation vector from the LiDAR frame to the other sensor’s frame. Lastly, to transform the position 

vector expressed in the other sensor’s reference frame to pixel coordinates, the formula is given by 

 

[
𝑢𝑠
𝑣𝑠
~
] = 𝐾𝑠 [

𝑟𝑠,𝑥/𝑟𝑠,𝑧
𝑟𝑠,𝑦/𝑟𝑠,𝑧

1

],               (3) 

 

where 𝐾𝑠 is the intrinsic matrix of the other sensor, and 𝑟𝑠,𝑥, 𝑟𝑠,𝑦, and 𝑟𝑠,𝑧 are the x, y, and z components of the position 

vector expressed in the other sensors’ reference frame, respectively. Note that the coordinate system for any camera 

reference frame has the x-y plane in the plane of the image, and the z axis is pointing out in the direction the image is 

looking. By the right-hand rule, the x axis is pointing horizontally to the right, and the y axis is pointing down. 

 After the bounding boxes were transformed from the LiDAR sensor to the thermal and webcam sensors, a decision-

level fusion process was executed to correlate detections between the different sensors, ultimately reaching a final 

decision on which detections should be kept or ruled out. Specifically, the degree of overlap between each bounding 

box from the two sensors was calculated, and the highest degree of overlap between two boxes was noted if it was 

above a threshold. The noted pair of boxes was then considered an “agreement” between the two sensors. After looping 

through the rest of the boxes and noting more overlapping box pairs, a final detection decision would be reached based 

on which sensors were required to agree. 

 Although other studies have investigated similar methods of box transformation and correlation for decision-level 

fusion, the use of lightweight detection models and the addition of a sensor agreement choice among three modalities 

was what distinguished the research from existing studies. In summary, instead of relying on feature-level or data-

level methods of fusion, a straightforward decision-level approach was chosen. Exploiting the utility of LiDAR depth 

images allowed for fast and sufficiently accurate transformations. 

 Some of the important parameters passed into the fusion algorithm included the following: the maximum number 

of detection results that could be passed by the individual object detection models, the detection confidence threshold 

for the individual models, the intersection over union (IoU) threshold for box correlation, and the decision-making 

mode, which would decide which sensor detections needed to agree for a detection to be kept. The best workflow 
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performance was found with the following parameters: max results at 3, confidence threshold at 0.5, IoU threshold at 

0.4, and decision-making mode requiring the LiDAR and thermal sensors to agree. The proper tuning of these 

parameters was important for good fusion algorithm performance, and more discussion on this topic will be provided 

after the results are presented. 

G. Performance Assessment Methodology 

 Once the fusion algorithm was developed, the new method was compared to the performance of individual models 

deployed on the individual sensors. The comparison was approached in two ways: a qualitative way, and a quantitative 

way. The qualitative method involved deploying the fusion workflow and individual models at the same time on the 

recorded testing videos [32, 33]. Viewing the two video streams side-by-side with detection outputs would be 

sufficient to indicate which method performed better. The quantitative method would compute average precision for 

the fusion algorithm and for each individual model on a hand-picked ground truth dataset [31, 34]. Because the fusion 

workflow performed best on confidence thresholds greater than zero, the average precision calculation did not cover 

the full confidence range, but the confidence thresholds were kept consistent between the two methods. 

 The ground truth dataset was randomly chosen from the testing data, but the same number of images was chosen 

from each scenario and sensing modality. Three regular scenarios were used: one person walking, one person sitting, 

and two people walking. Also, three other special scenarios were used: one person walking in the dark, the testing 

dummy sitting, and one person standing projected on a screen. 

 For each scenario, 30 images were chosen, with ten images corresponding to each sensing modality. The images 

were then imported to Label Studio and labeled for ground truth detections. Ground truth was also labeled for the 

webcam in the dark scenario by mapping the LiDAR ground truth boxes into the webcam’s pixel coordinate system. 

The ground truth dataset was then exported and used in an analysis code to compute average precision. 

 Part of the analysis gave the option to perform a monotonicity correction on the precision-recall curve results prior 

to finding the area under the curve for average precision. The correction would ensure that precision values could not 

increase as recall values increased. Average precision results will be presented with both the monotonicity correction 

(smoothing) and without. 

IV. Results 

First, the quantitative results from the average precision computations will be presented in Table 1 and Table 2. 

Table 1 considered only the standard testing conditions, and Table 2 considered the full ground truth dataset, including 

the challenging scenarios. After that, qualitative results will be shown in Fig. 4 and Fig. 5, providing examples of 

outputs from two different scenarios. In the next section, discussion and interpretation of the results will be presented. 

Table 1 Average Precision Results – Standard Conditions Only. 

Result AP (smoothing) AP (without 

smoothing) 

Idv LiDAR 95% 95% 

Idv Thermal 95% 95% 

Idv Webcam 90% 90% 

Fused LiDAR 90% 90% 

Fused Thermal 90% 90% 

Fused Webcam 90% 90% 

Table 2 Average Precision Results – All Conditions, Including Tricking Data. 

Result AP (smoothing) AP (without 

smoothing) 

Idv LiDAR 84.5% 76.2% 

Idv Thermal 96% 96% 

Idv Webcam 67.4% 66.8% 

Fused LiDAR 90% 90% 

Fused Thermal 90% 90% 

Fused Webcam 90% 90% 
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Fig. 4 Testing Dummy Scenario. 

The left column is for the output from the fusion algorithm,  

and the right column is for individual model output. The  

modalities are ordered LiDAR, thermal, and webcam from  

top to bottom. Any returned detections are shown in the images. 

 

 
Fig. 5 Two People Scenario. 
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V. Discussion 

When viewing the recorded testing videos with detections projected on them from the individual models and from 

the fusion algorithm, it was clear that the fusion algorithm performed more reliably than the individual models, 

especially on the more difficult testing scenarios. The individual model deployed on the webcam could not detect the 

person in the dark scenario, and it returned false detections in the testing dummy and screen projection scenarios. 

Similarly, the model deployed on the LiDAR sensor falsely detected the testing dummy. However, in the testing 

scenarios with regular conditions, the individual models performed well. In all scenarios, the fusion workflow 

performed reliably. 

These observations from the qualitative assessment were somewhat matched by the quantitative results in Table 1 

and Table 2. A higher average precision indicated better performance, and the fusion algorithm metrics agreed among 

all three sensors. The workflow produced a unified detection decision, so this result made sense. 

When considering the full dataset, the individual models deployed on the LiDAR and webcam were outperformed 

by the workflow, but the individual model deployed on the thermal sensor performed better than the workflow. This 

happened because none of the testing images were designed to exploit a weakness in the thermal sensor, and calibration 

inaccuracies resulted in a few disagreements between transformed boxes when they should not have disagreed. Thus, 

the fusion algorithm missed a few detections in the ground truth dataset compared to the individual model deployed 

on the thermal sensor. In fact, this same inaccuracy is what resulted in the fusion algorithm having slightly worse 

performance than the individual models on the standard conditions in Table 1. If testing images were gathered to 

somehow “trick” the thermal sensor, then it would be likely that the fusion algorithm would outperform all three 

individual sensors. For example, a possible scenario for the thermal camera could be a person wearing a reflective 

thermal blanket, which should hide the heat signature. In all, the fusion workflow demonstrated competent 

performance and even superior performance in certain scenarios. 

Moving on, the proper tuning of algorithm inputs was also essential for good workflow performance. If the 

maximum number of detection results was too high and/or confidence thresholds were too low, then the individual 

models would return numerous low-confidence detections that would sometimes interfere with the box correlation 

step, diminishing workflow performance. So, a confidence threshold of 0.5 was set and a maximum number of 

detection results was set at 3 to limit the number of potential low-confidence detections that would be passed by the 

models. One of the studies previously listed addressed this issue in a different way [5]. 

Similarly, if the IoU threshold set for box correlation was too high, then small inaccuracies in the calibration and 

depth-resolving steps would return IoUs below the threshold, even though the detections should have agreed. So, the 

IoU threshold was relaxed to 0.4 from its original value of 0.5, yielding much better model performance. Also, given 

that the testing data did not provide a challenging scenario for the thermal sensor, the decision-making mode was set 

such that the LiDAR and thermal sensors had to agree for the workflow to output the detection. 

Lastly, from viewing the average precision results, it is likely that the models were overtrained, because the training 

data and testing data were quite similar. However, the overtrained models did not affect the primary goal of the study: 

comparing performance between the individual models and the combined workflow. 

VI. Conclusion 

The proposed method of decision-level fusion between lightweight object detection results from different sensors 

has been proven to perform sufficiently on the testing data. The usefulness of the method resides in its minimal 

complexity and efficiency. There is a wealth of future work that may be taken on to improve the method and build 

upon it. Adding semantic segmentation and better extrinsic calibration would improve depth resolving and 

transformation accuracy. Models trained on more diverse datasets would handle challenging scenarios more 

accurately. The problem of adapting the decision-making mode to different scenarios either autonomously or manually 

is another important factor, especially since there are three sensing modalities. Also, deployment of the method on 

embedded computers for real-time testing would be useful, because the motivation behind the study was a scenario 

involving an autonomous drone searching for people. 
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