
1

Development of an Outdoor Aerial Multi-

Agent Robot Toolkit at the UF Autonomy

Park

James W. Cross1 and Warren E. Dixon2
University of Florida, Gainesville, FL, USA

This paper presents the development of a software toolkit to support ground and aerial

robotics at the University of Florida’s (UF) Autonomy Park, and the challenges of deploying

multi-agent outdoor aerial robotics. The robots available to researchers at the UF Autonomy

Park include approximately 30 robotic systems, comprised of quadruped, wheeled and

multirotor platforms that need to communicate heterogeneously and run a variety of

controllers to support multi-agent and adaptive control research. Outdoor localization for

aerial and ground robots operating in proximity was achieved by fusing IMU data with RTK-

GPS (Real-Time Kinematic Global Positioning System). Barometric-pressure-based altitude

measurements varied erratically and downwards facing LIDARs were installed to maintain a

constant altitude on the quadcopters. A workflow using Robot Operating System 2 (ROS2)

was developed to enable researchers to implement controllers and structure programs that

could be later deployed onboard the robots. An autonomous herding experiment was

implemented using the author’s software package and simulated results were demonstrated.

I. Introduction

Autonomous multi-agent robotic systems are in agricultural, aerospace and defense industries, where they offer

increased resiliency and enhanced capabilities in dynamic environments. Multi-agent robot operations are being

investigated to herd livestock between paddocks [6], where ground and aerial robotic systems are used to share

livestock state information and respond appropriately. Missile intercept problems can benefit from multi-agent

coordination between intercepting agents, aiming to increase the probability of intercept when targets attempt to evade

[5] or eliminate interceptors with countermeasures. Multi-agent robotics combines the strengths of individual robotic

systems and distributes the advantage over the whole.

There has been growing interest in performing heterogeneous experiments at the University of Florida’s (UF)

Autonomy Park, using aerial and ground robots outdoors in a single experiment. When developing control algorithms

for a heterogeneous system, a challenge arises in the difference of each robot's available controllable inputs. For

example, at the UF Autonomy Park the aerial robots have 4 controllable inputs (roll, pitch, yaw, throttle), and the

ground robots have 2 controllable inputs (linear and angular velocities). Transformations are required to move a

ground robot with a controller output that would be suitable for an aerial robot. The goal of this project was to develop

a set of tools to allow researchers to more efficiently demonstrate novel control methods on different types of robots.

The author implemented a herding controller to demonstrate how the software toolkit can be used. Several features

of the software toolkit are highlighted by the presented herding experiments. The field of indirect control, also called

herding, is inspired and often compared to a phenomenon exhibited in nature when a dog is used to corral and move

a herd of sheep in and between paddocks. Indirect control problems are characterized by the number of target agents,

number of herding agents, interaction dynamics, and goal locations (e.g., [4]). The herding and target agents have an

interaction dynamic that the herding agent can exploit to direct the target agent to a goal location. Interaction dynamics

are modeled by sensor modalities that allow target agents to track herding agents. Interaction dynamics have also been

used by herding agents to physically move the target agents using aerodynamic forces [4]. Applications for adaptive

1 Undergraduate Student, Mechanical and Aerospace Engineering Department, AIAA Student Member 1342434
2 Faculty Advisor, Mechanical and Aerospace Engineering Department

2

herding controllers in aerospace include redirecting animals near airports, hostile aerial swarm defense, and missile

guidance [6, 3, 5].

The author's contribution was to develop a software package that accepts body-fixed velocity commands and

provides state feedback in a world fixed-frame, this paradigm was developed to align with common industry standards

and typical simulation environments. World fixed-frame position conversion is automatic, and all robot positions are

presented to the controller in the Autonomy Park frame. The package streamlined the experimental controller

implementation process by allowing the experimental controller to be written in Python and verified on any computer.

The package managing the robots can execute the same code, eliminating the requirement to develop and test on a

dedicated Ubuntu computer.

This paper provides relevant background about the Autonomy Park, the development of the software toolkit in

Robot Operating System 2 (ROS2), and a herding experiment example. Many others contributed to bringing the

Autonomy Park online and this paper would not be possible without their contributions.

II. Background

The Autonomy Park is an outdoor laboratory located adjacent to the UF campus in Gainesville, Florida. The

Autonomy Park is managed by UF’s Mechanical and Aerospace Engineering Department with a goal to support the

development of multi-agent robotics, nonlinear controls research, robot perception research, and inter-agent

communication research in real world conditions [1]. The Autonomy Park consists of a 75x27x18 meter netted

enclosure that contains a small hill and grassy field. Additionally the Autonomy Park has two buildings to store robots

and run experiments. An aerial view of the Autonomy Park is provided in Figure 1. The robots available to researchers

at the Autonomy Park are presented in Table 1. All robots are equipped with RTK-GPS receivers for positioning data,

IMUs for orientation data, and are running ROS2 Humble to network and distribute state information and execute

controller outputs.

Ground Robots
Aerial Robots

Quadruped Wheeled

(3) Unitree Go1 (2) Clearpath Jackal (1) Freefly Alta-X

(1) Unitree B1 (2) Clearpath Husky (3) Freefly Astro

 (20) Custom3 Multirotor

Table 1: Robots available at the Autonomy Park

Fig. 1: Aerial view of the Autonomy Park netted enclosure, control buildings can be seen at the end of the

enclosure [1].

3 “Custom” refers to lab-built quadcopters assembled using a variety of off-the-shelf parts.

3

III. Technical Challenges and Solutions

A. Localization Challenges

The Autonomy Park facilitates multi-agent experiments with the option for over 20 vehicles being independently

controlled simultaneously. Accurate localization is necessary to evaluate controller performance and safely control

multiple robots in a confined area. Inaccurate sensors may cause reported robot positions to shift erratically by greater

than several times a robot’s average length, even if the robot is not moving. Collision avoidance and potential field

boundary programs are used to minimize the risk of a collision, which both rely on accurate position estimates to

correct hazardous trajectories. Accurate position estimates are critical for robotics and especially for outdoor robotics

where nonlinearities caused by the environment can influence an experiment.

B. Obtaining Latitude and Longitude

An RTK-GPS system has been successfully used for accurate localization within the Autonomy Park. Uneven

heating of the troposphere and charged particles from the sun in the ionosphere alter the speed of signals from GPS

satellites. The result is that for a given location, the reported value from a GPS receiver will vary an unacceptable

amount for proximity-based operations. RTK-GPS mitigates this error as the technology consists of a base station

located at a fixed location broadcasting measurement corrections to compatible receivers mounted on the robots. At

the Autonomy Park, an Emlid Reach RS3 RTK base station is attached to a tower adjacent to the netted enclosure. An

accurate position reading was obtained by recording approximately 24 hours of GPS data with the receiver attached

to the tower and processing the data using a tool such as CSRS-PPP [2].

C. Maintaining Altitude

One consequence of the Autonomy Park’s north Florida location is that summer storms can form and move inland

over the course of a day. The aerial vehicles at the Autonomy Park rely primarily on barometric pressure to determine

altitude. A consequence of rapidly developing summer storms is that atmospheric pressure at ground level can vary

by up to 3 kPa. During these events, multirotor aircraft have been observed accelerating upwards into the netted

enclosure while attempting to hold a stable position. The altitude discrepancy is believed to be the result of a sufficient

difference in the AMSL pressure of the region with the actual local barometric pressure.

 Solutions to this problem are ongoing and include a LIDAR coupled with a height map and meteorological

equipment to offer corrections. Single beam LIDARs have been attached to the multirotor aircraft and pointed directly

downwards to measure the distance to the ground. Onboard flight computers are set to maintain a fixed height above

the ground. The main limitation with this approach is that aerial robots cannot fly over ground vehicles or other aerial

robots as it would result in erroneous distance readings from the LIDAR beam contacting the robot instead of the

ground. Additionally, altitude estimates lose accuracy when the vehicle is pitching forward and the LIDAR beam is

no longer pointed directly downwards.

 Another approach being investigated includes mounting an ultrasonic anemometer and barometer unit on a nearby

tower. These sensors can record wind speed and direction along with atmospheric pressure to share with the robots

along with allowing operators to determine if conditions are safe to launch an experiment. This system is still in

development and will be used in conjunction with LIDAR readings.

IV. Software Framework Design

The presented software toolkit serves to aggregate and fuse sensor data to generate state information for the

intended robot platform, in a common reference frame amongst all robots. The state information is used by the

experimental controller to process the control outputs. The product is a software suite that facilitates the input of state

data to controllers and handles the output of velocity messages using the same data types and overall code structure

in simulation and on various robots. More specifically, ground robots with fewer degrees of control than aerial robots

should be able to receive the same commands from a controller.

ROS2 is a middleware that runs the Autonomy Park robots allowing a single node to interface with multiple robots.

ROS2 uses a network of topics to distributively share information, eliminating the need for a central computer to send

individual commands to every robot. ROS2 packages are most commonly developed using the Ubuntu operating

system, which may not be a researcher’s native operating system. The author’s software toolkit is comprised of the

following parts:

1) Python Simulation

2) ROS2 Simulation

3) ROS2 Experiment Package

4

A. Core Components

The python simulation is designed to allow researchers to convert controllers written in other languages to python

code that uses the same variable names and program structure as common ROS2 nodes. A matplotlib window is

included to visualize trajectories calculated by integrating the controller output using a common Euler integration

method. The python simulation is not intended to replace tools used for controller evaluation, but to verify correct

implementation in a format that can be easily copied into ROS2.

The ROS2 simulation runs the same code from the python simulation and verifies implementation in a ROS2

environment. An RVIZ visualization, in addition to a 2d plot, is generated when the controller is running. For the

herding example, the visualization is composed of herding agent and target agent nodes along with an integrator and

visualization node. The nodes include common functions that influence dynamics, behavior and evasion dynamics to

customize the characteristics of each robot.

The ROS2 experiment code modifies the ROS2 simulation package by removing integrator nodes and routing

output velocity commands directly to the robots. Robot position estimates are drawn from the fused state data and

passed into the controller. Additionally, key values such as target agent tracking error, position, and velocity are saved

to a CSV file for post-experiment analysis.

B. Functions

A number of functions are included to aid in controller implementation. The software toolkit was designed to

initially support a herding experiment which consists of a herding agent directing a target agent towards a goal

location. The herding agent and target agent nodes contain relevant functions and are listed in Table 2. Both nodes

also subscribe to other robot positions and can publish commands to the onboard motor driver.

Herding Agent Node Target Agent Node

convert_velocity() convert_velocity()

distance() distance()

controller() interaction_function()

 levy_walk()

Table 2: Herding agent and target agent node functions included in the toolkit.

 The wheeled ground vehicles at the Autonomy Park are either mechanically differential-drive robots or lack

individually addressable motor control. Effectively, all the wheeled ground vehicles can accept only a forward or

backward velocity and an angular velocity about the vertical axis. The convert_velocity function converts

nonholonomic velocity commands from a controller into linear and angular velocities for the ground vehicles. A

Euclidian norm and atan2 of the controller output velocity are used.

The primary benefit to this approach is that researchers can treat each robot as interchangeable agents, sending the

same velocity messages to quadcopters and differential drive robots. This approach effectively treats ground robots as

holonomic agents in a heterogenous experiment. Limitations of this approach include how the software toolkit

currently only works with 2d simulations, i.e. the quadcopters do not change altitude and all robot positions are

projected onto a plane parallel to the ground. Additionally, the program is limited to controllers that output velocity

commands. Because of this limitation, 2nd order control is not directly available. Future goals for the project include

allowing experimental controllers to modulate quadcopter altitude and to develop software drivers to allow

acceleration control of the robots directly or numerically from sensed and filtered velocity information.

 Distance is calculated using the Euclidian norm of the positions of each robot. The distance function is calculated

within the Autonomy Park frame. The Autonomy Park frame is defined as a Cartesian space with the origin centered

in the middle of the park on the ground. To accomplish a simplified coordinate space in the real world, the ROS2

transform (TF) module was used to transform reference frames and convert sensor data onto the centroid of the robots

and ultimately express the position and orientation of each robot to the geometric center of the Autonomy Park. The

use of a common reference frame simplifies experiment design, as goal locations and expected trajectories are

expressed in XYZ values. The robots natively receive position information from RTK-GPS receivers, but then the

data is fused with IMU and odometry data using the Robot Localization ROS2 package. The TF module is used within

the robot localization package to handle the transformations to the Autonomy Park reference frame.

 The controller function contains the controller being tested and is provided with every robot’s position and outputs

velocity commands either directly to a robot or to convert_velocity first. By running a separate node for every agent,

the controller is able to run onboard each robot. Onboard processing is critical to several types of planned experiments

which incorporate jamming and uncertain state information, where the robot must still be able to execute its mission

without a connection to a central computer.

5

 The interaction_function is critical to planned herding experiments where target agents are herded towards a goal

location using some interaction dynamic. The function is currently designed to cause the target agent to move in the

opposite direction of the herding agent when the distance function is below a given threshold. Future improvements

include adding uncertainty into the target agent response.

Additionally, it may be desirable for target agents in a herding experiment to move in a general area when not

being actively herded. Loitering is controlled with the levy_walk function, which uses a pareto distribution to output

small linear and angular velocities, such behavior is analogous to animals in the real world that may wander when left

unattended.

V. Implementation Example

Figures 2 and 3 depict a single agent tracking a single target agent with first order dynamics, shown in (1), using

a simple herding controller. The error of the target agent with respect to the goal location is denoted with ex, and the

error of the herding agent with respect to the desired trajectory is denoted by ey. User selected gains include k1 and k2,

while g represents the interaction dynamic which is currently a constant.

𝑢 ≜ 𝑘2𝑒𝑦 − (

𝑘1
2

𝑔
+ 𝑔) 𝑒𝑥

(1)

Fig. 2: Trajectories of a herding simulation Fig. 3: Target agent goal distance error, ex (meters)

 Figure 4 depicts agent trajectories as position and velocity data is shared between nodes using ROS2. Figure 5

uses a ROS2 tool called RVIZ to plot the location of poles supporting the nets and the origin of the Autonomy Park

coordinate frame at the center of the grid. Additionally, vectors that indicate which direction the robots are facing are

plotted in real time. Coupled with the ROS2 simulation code, a rough estimate of the trajectories can be viewed in

Euclidian space to determine if the goal or starting locations are placed in unreachable areas or close to the net.

Fig. 4: Simple herding problem 2d visualization in

real time using data shared between ROS2 nodes

Fig. 5: RVIZ visualization of the Autonomy Park

enclosure

6

 Figure 6 uses a ROS2 development tool called RQT-Graph to plot the topics and nodes active in the simple herding

experiment. The ellipses in the top left corner are from the ROS2 TF library and are the transforms used to convert

from global GPS positions to the local Autonomy Park frame. The boxes in the center correspond to the herding agent

and target agent robots and indicate how position data is shared between robots and internally.

Fig. 6: RQT-Graph plot of active ROS2 nodes, topics, frames, and subscribers

VI. Conclusion

This paper presents the challenges in implementing multi-agent outdoor robotics at UF’s Autonomy Park along

with the author’s software toolkit designed to facilitate experiments. Precise outdoor localization of multiple robots in

proximity-dependent operations is necessary for safe and accurate experiments. The development of solutions to

inconsistent altitude control are ongoing. The author’s software toolkit allowed ground robots and air robots to receive

the same types of output from a controller and function as interchangeable robots with a set of useful functions for

experiments. Finally, the author’s software toolkit was tested using a controller to demonstrate sample results for a

multi-agent herding experiment.

Acknowledgments

The author would like to acknowledge Jhyv Philor, for developing a simple herding controller to conduct an

experiment. The author would also like to thank Patrick Amy, Dr. Sage Edwards, William Warke, Brandon Fallin,

and Jordan Insinger for their help in solving challenges at the Autonomy Park.

References

[1] Autonomy Park – Department of Mechanical & Aerospace Engineering. https://mae.ufl.edu/research/facilities/autonomy-park/.

Accessed Feb. 20, 2025.

[2] Canadian Geodetic Survey. CSRS-PPP: Precise Point Positioning. https://webapp.csrs-scrs.nrcan-rncan.gc.ca/geod/tools-

outils/ppp.php. Accessed Feb. 25, 2025.

[3] Chipade, Vishnu S, and Panagou, D. “Aerial Swarm Defense Using Interception and Herding Strategies.” IEEE Transactions

on Robotics, Vol. 39, 2023, pp. 3821–3837. https://doi.org/10.1109/TRO.2023.3292514.

[4] Licitra, R. A., Bell, Z. I., and Dixon, W. E. “Single-Agent Indirect Herding of Multiple Targets with Uncertain Dynamics.”

IEEE Transactions on Robotics, Vol. 35, 2019, pp. 847–860. https://doi.org/10.1109/TRO.2019.2911799.

[5] Licitra, R. A., Neale, A. J., Doucette, E. A., and Curtis, J. W. Adversarial Aircraft Diversion and Interception Using Missile

Herding Techniques. No. 10982, 2019, pp. 335–343. https://doi.org/10.1117/12.2519148.

[6] Long, N. K., Sammut, K., Sgarioto, D., Garratt, M., and Abbass, H. A. “A Comprehensive Review of Shepherding as a Bio-

Inspired Swarm-Robotics Guidance Approach.” IEEE Transactions on Emerging Topics in Computational Intelligence, Vol.

4, 2020, pp. 523–537. https://doi.org/10.1109/TETCI.2020.2992778.

	Development of an Outdoor Aerial Multi-Agent Robot Toolkit at the UF Autonomy Park
	I. Introduction
	II. Background
	III. Technical Challenges and Solutions
	A. Localization Challenges
	B. Obtaining Latitude and Longitude
	C. Maintaining Altitude

	IV. Software Framework Design
	A. Core Components
	B. Functions

	V. Implementation Example
	VI. Conclusion
	Acknowledgments
	References

