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As a way to introduce students to the principles of propulsion and solid rocket motor
(SRM) design, Georgia Tech Experimental Rocketry (GTXR), a subdivision of the Ramblin’
Rocket Club at Georgia Tech, organizes an annual new-student high-powered solid rocket
motor development program. This paper discusses the simulation models, analysis techniques,
and design decisions involved in the development of one such SRM. A computer program
was developed based on combustion and compressible flow theory to evaluate the theoretical
motor performance with provided dimensions and constants. This program is capable of
simulating both BATES and star grain propellant geometries, allowing for the selection of an
optimal propellant grain geometry given various design constraints and performance targets.
Commercial design software was then used to produce initial concepts of motor assemblies.
Concepts were evaluated using finite element analysis (FEA) and computational fluid dynamics
(CFD) software to ensure sufficient factors of safety. The iteration of motor design was informed
by these results, enabling the optimization of performance metrics such as mass ratios and
factors of safety. The comprehensive simulation modeling, along with mechanical and fluid
analysis, resulted in an innovative high-power amateur SRM concept with confident safety
margins and manufacturability.

I. Nomenclature

𝐴∗ = throat area
𝐴𝑏 = burn surface area
𝐴𝑒 = grain end surface area
𝐴𝑝 = grain port surface area
𝐿𝑔 = grain length
𝑀 = mach number
𝑁𝑔 = number of grains
𝑃𝑐 = chamber pressure
𝑅 = specific gas constant

𝑇0 = stagnation temperature
𝑎 = burn rate coefficient
𝑐∗ = characteristic velocity
𝑒 = star grain angular fraction
𝑓 = star grain fillet radius
¤𝑚 = mass flow
𝑛 = pressure exponent
𝑛∗ = number of star points
¤𝑟 = burn rate

𝑟𝑖 = inner radius
𝑟𝑜 = outer radius
𝑟𝑝 = star point radius
𝑤 = star grain web distance
𝑦 = burn distance
𝜃 = star grain opening angle
𝛾 = specific heat ratio
𝜌 = propellant solid density

II. Introduction

At Georgia Tech, one of the largest student engineering teams on campus is Georgia Tech Experimental Rocketry
(GTXR), a subdivision of the Ramblin’ Rocket Club student organization. The main mission of GTXR is to become

the first collegiate rocket team to reach space using a two-stage rocket. As commercially-produced solid rocket motors
(SRM) currently in production possess insufficient impulse for a two-state space-shot rocket, GTXR’s Propulsion
subteam develops and manufactures custom motors in-house. Due to the nature of being a collegiate engineering
team, most new members who join every year are first- or second-year undergraduate students who have had little to
no experience in the subject of rocket propulsion. Therefore, as a comprehensive introduction to propulsion, GTXR
organizes a high-powered solid rocket motor development program anually where teams of new members are guided in
the process of simulating, designing, and manufacturing a SRM from scratch. This paper documents the process used
for the development of one such SRM in the hope that it may be useful to those beginning their journey into solid rocket
propulsion.

∗Undergraduate Members, Georgia Tech Experimental Rocketry, Daniel Guggenheim School of Aerospace Engineering, AIAA Student Members.
Primary Authors.

†Undergraduate Advisor, Georgia Tech Experimental Rocketry, Daniel Guggenheim School of Aerospace Engineering, AIAA Student Member.
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III. Simulation

A. Background
To understand and simulate theoretical motor performance, a quantitative understanding of the fundamental principles

that govern the burning of solid propellant needs to be established.
The process begins with selecting a propellant formulation. It is assumed that the characteristics of the propellant

are known prior to the start of the motor design process, including its solid density (𝜌), characteristic velocity (𝑐∗),
stagnation temperature (𝑇0), specific gas constant (𝑅), and specific heat ratio (𝛾). Publicly available propellant evaluation
programs (PEP) can be used to calculate these constants.

Next, the iterative simulation values are calculated. Chamber pressure can be found as:

𝑃𝑐 = (𝐾𝑛𝑐
∗𝑎𝜌)1/1−𝑛, (1)

where 𝐾𝑛, the ratio between the burn surface area (𝐴𝑏) and throat area (𝐴∗) [1]. The chamber pressure is a critical factor
to consider for the safety of the motor design, influencing the materials and retention methods selected. St. Robert’s law
is used to determine the burn rate ( ¤𝑟) and can be calculated as:

¤𝑟 = 𝑎𝑃𝑛
𝑐 , (2)

where 𝑎 and 𝑛 are the burn rate coefficient and the pressure exponent, respectively [1]. These values are unique to every
propellant formulation and must be empirically determined. Note that the surface area burns and progresses normal to
the surface. This is particularly relevant a star-shaped grain geometry, as sharp points will naturally evolve into curves.

The last formula specific to solid propellant burning is for mass flow. Mass flow can be determined using the
equation:

¤𝑚 = 𝜌𝐴𝑏 ¤𝑟. (3)

It is important to recognize that these equations are intertwined; the increased burn surface area raises chamber pressure,
which in turn raises the burn rate, raising the mass flow. These relationships allow for many different thrust curves to be
created, impacting motor performance by tweaking the initial conditions and constants.

With these equations, attention can be turned towards the geometry of the propellant itself. In SRMs, the propellant
is cast into grains that are loaded into the motor hardware. Many different grain geometries can be used, resulting in
different thrust curves from the evolution of the burn area over the course of the burn. Fig. 1 demonstrates the relatively
linear relationship between surface area and thrust.

This paper will examine two types of grain geometries: BATES and star. The BATES grain geometry consists only
of cylindrical grains with a concentric cylindrical hole, or port, through the center of the grain (Fig. 2). It is the most
common grain in amateur rocketry due to its ease of manufacturing and simulation. The star grain is a more complex
geometry, but allows for a thrust curve to be more precisely customized due to the increased geometric flexibility of a
star shape. Star grain geometries can result in a range of thrust curves, from neutral (flat) thrust curves to progressive
and regressive curves. When using a star grain geometry, there are two main categories of star shapes: pointed stars and
filleted stars (Fig. 3).
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Fig. 1 Burn surface area vs. thrust for a
sample star grain.

Fig. 2 A cross-section of a sample BATES
Grain.

a. b.

Fig. 3 (a) A cross-section of a pointed
star grain. (b) A cross-section of a filleted
star grain.

At its core, SRM simulation is a geometry problem. Though all performance variables, such as pressure and thrust,
evolve throughout the burn, they are fundamentally functions of the burn surface area. This means that if the surface
area can be calculated, all remaining values can then be determined through their respective equations. The propellant
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burns in two ways: port burning and end burning. Port burning is the burning that occurs along the interior port surface
of the grain, burning outwards towards the casing. The second is end burning, the axial burning on the top and bottom
surfaces of the grain in towards its center. In most cases, grains are significantly longer than they are wide (their axial
length is larger than their diameters), meaning grains usually burn through its entire web (the distance between the outer
diameter of the grain and the largest diameter point of the interior geometry) before the ends burn to the center.

B. BATES Geometries
The initial port surface area can be calculated using:

𝐴𝑝 = (2𝜋𝑟𝑖)𝐿𝑔 . (4)

As the end surface area is just a washer, the grain end surface area can be calculated as:

𝐴𝑒 = 2(𝜋𝑟2
𝑜 − 𝜋𝑟2

𝑖 ). (5)

If the ends of grains are inhibited (prevented from burning), Eq.(5) can be omitted from the overall burn area calculation.
The overall burn surface area is calculated by summing the port and end surface areas of every grain. To calculate the

surface area as the burn progresses, the radius of the inner circle grows while the length of the grain shrinks proportional
to the distance burned, 𝑦. Thus:

𝐴𝑏 = (2𝜋(𝑟𝑖 + 𝑦))𝑁𝑔 (𝐿𝑔 − 2𝑦) + 2(𝜋𝑟2
𝑜 − 𝜋(𝑟𝑖 + 𝑦)2). (6)

The burn area is repeatedly calculated for every time step throughout the simulation duration.

C. Star Grain Geometries
These equations and derivations expand on methods previously established for calculating the burn surface area of

star grains in Refs. [2, 3]. The star is defined using five initial values: the number of star points (𝑛∗), the fillet radius ( 𝑓 ),
the angular fraction (𝑒), the web distance (𝑤), and the opening angle (𝜃).

For a filleted star, the angular fraction is used to determine where the fillet begins (Fig. 4). In the case where
a pointed star is desired, the fillet and angular fraction are set to 0 and 1 respectively. To simplify calculations, the
symmetry of the star can be used. It is only necessary to examine half of one of the star points (Fig. 5), after which the
values found can be multiplied by 2𝑛∗.

The burn progression of the star grain is more complex than that of the BATES grain and must first be divided into
two types of progressions: the first is the scenario where the star leg will burn through before the web, and the second
occurs when there is a shallower opening angle or a short web, causing the web to burn through prior to the leg (Fig. 6).
The second scenario introduces certain simplifications and will be discussed after the equations for the first scenario
have been established.

The overall progression for the geometry where the leg burns through can also be separated into three distinct
phases: the first phase lasts from the initial burn up to the point where the star leg disappears, the second phase then
progresses until the web burns through, at which point the third phase begins and the grain is reduced to sliver burning.
To calculate the port surface area, the perimeter can be calculated along three edges: the leg (𝑆1), the curve that evolves
either from the initial fillet or the sharp point (𝑆2), and in the case that there is a fillet, the line between the start of the
fillet and the edge of the star section (𝑆3) (Fig. 7).
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Fig. 4 The angle derived from the angular
fraction, governing the start of the fillet.

Fig. 5 The portion of the grain analyzed
to simplify calculations through symmetry.

a. b.

Fig. 6 (a) The burn progression for a
geometry where the leg burns through.
(b) The burn progression for a geometry
where the leg remains.
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𝑆1 can first be determined for the initial case where there is no fillet. Application of trigonometric relations shows
that:

𝑆1 = (𝑟𝑝 sin(𝑒𝜋/𝑛∗))/sin(𝜃/2). (7)

For when there is a fillet or the burn has progressed, a second term must be added which will shorten the total length:

𝑆1 = (𝑟𝑝 sin(𝑒𝜋/𝑛∗))/sin(𝜃/2) − (( 𝑓 + 𝑦) cot(𝜃/2)). (8)

Next 𝑆2 is found. As it is a slice of a circle with radius 𝑓 that will grow with 𝑦, first the angle must be found:

𝜔 = (𝜋/2) − (𝜃/2) + (𝑒𝜋/𝑛∗), (9)

∴ 𝑆2 = ( 𝑓 + 𝑦)𝜔. (10)

Finally, using the arc length formula, 𝑆3 can be determined as:

𝑆3 = (𝑟𝑝 + 𝑓 + 𝑦) ((𝜋/𝑛∗) − (𝑒𝜋/𝑛∗)). (11)

Accounting for the expansion due to symmetry gives a total port surface area of:

𝐴𝑝 = 2𝑛∗𝑁𝑔𝐿𝑔 (𝑆1 + 𝑆2 + 𝑆3). (12)

To find the end surface area, the star section can be further divided into four sections (Fig. 8). As the first section is
a slice of a circle with an angle derived from the angular fraction, it will have a section area of:

𝐴𝑒1 = (1/2) ((𝜋/𝑛∗) − (𝑒𝜋/𝑛∗)) (𝑟𝑝 + 𝑓 + 𝑦)2. (13)

Next, the second section area is a slice of the circle with radius 𝑓 that grows with 𝑦 along the same angle 𝜔 previously
found (Eq. 9), so its area is:

𝐴𝑒2 = (1/2) ( 𝑓 + 𝑦)2𝜔. (14)

The third section is a right-angle trapezoid, so to use the formula for the area of a trapezoid, its bases and heights must
first be determined. The height is ( 𝑓 + 𝑦) and one base can be seen to be 𝑆1. The other base, as shown in Fig. 9, can be
simplified to:

𝐵2 = 𝑆1 + (cot(𝜃/2) ( 𝑓 + 𝑦)), (15)

∴ 𝐴𝑒3 = ((𝑆1 + 𝐵2) ( 𝑓 + 𝑦))/2. (16)

The last area is a triangle with known legs of 𝑟𝑝 and 𝐵2. The angle between them can be derived as:

𝛼 = 𝜋 − (𝜋 − (𝜃/2)) − (𝑒𝜋/𝑛∗) = (𝜃/2) − (𝑒𝜋/𝑛∗), (17)

∴ 𝐴𝑒4 = (1/2)𝐵2𝑟𝑝 sin(𝛼). (18)

This gives a final end area of:
𝐴𝑒 = 2(𝜋𝑟2

𝑜 − (𝐴𝑒1 + 𝐴𝑒2 + 𝐴𝑒3 + 𝐴𝑒4 )). (19)
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Fig. 7 The three side lengths of the
port surface perimeter.
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Fig. 8 The four sections that the total
area is divided into during the first
phase.
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Fig. 9 The side length and angles neces-
sary to find the area of the trapezoid.
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As this phase lasts until the star leg 𝑆1 burns through, the condition for this phase can be seen to be:

𝑆1 ≥ 0. (20)

Moving to phase two, since 𝑆1 has burned through, only 𝑆2 and 𝑆3 need to be calculated. 𝑆2 can still be calculated
as an arc length, however, the angle changes as the end point of the arc moves up along the line of symmetry. Using the
previously obtained angles and values, the angle and therefore 𝑆2 can be calculated as:

𝜙 = (𝜋/2) + (𝑒𝜋/𝑛∗) − tan−1
(√︃

( 𝑓 + 𝑦)2 + (𝑟𝑝 sin(𝑒𝜋/𝑛∗))2/(𝑟𝑝 sin(𝑒𝜋/𝑛∗))
)
, (21)

∴ 𝑆2 = ( 𝑓 + 𝑦)𝜙. (22)

Since 𝑆3 will be governed by the previously derived equation (Eq. 11) until the web burns through, the total port surface
area is:

𝐴𝑝 = 2𝑛∗𝑁𝑔𝐿𝑔 (𝑆2 + 𝑆3). (23)

The end area can again be divided into four sections (Fig. 10). The first section can be calculated as a slice of a circle as
the radius and angle are already known:

𝐴𝑒1 = (1/2) ((𝜋/𝑛∗) − (𝑒𝜋/𝑛∗)) (𝑟𝑝 + 𝑓 + 𝑦)2. (24)

The second section is a right triangle with a known height of 𝑟𝑝 sin(𝑒𝜋/𝑛∗) so the area can be calculated as:

𝐴𝑒2 = (1/2) (𝑟𝑝 sin(𝑒𝜋/𝑛∗)) ((𝑟𝑝 sin(𝑒𝜋/𝑛∗)) cot(𝑒𝜋/𝑛∗)). (25)

The third area is another right triangle with a first base 𝑟𝑝 sin(𝑒𝜋/𝑛∗) whose other base can be found using the
Pythagorean theorem, giving an area of:

𝐴𝑒3 = (1/2) (𝑟𝑝 sin(𝑒𝜋/𝑛∗))
√︃
( 𝑓 + 𝑦)2 − (𝑟𝑝 sin(𝑒𝜋/𝑛∗))2. (26)

The last area is another slice of a circle, in this case with a radius of ( 𝑓 + 𝑦) at the angle 𝜙 calculated for 𝑆2 (Eq. 21):

𝐴𝑒4 = (1/2)𝜙( 𝑓 + 𝑦)2. (27)

∴ 𝐴𝑒 = 2(𝜋𝑟2
𝑜 − (𝐴𝑒1 + 𝐴𝑒2 + 𝐴𝑒3 + 𝐴𝑒4 )). (28)

As this phase progresses until the web has burned through, its condition is 𝑦 ≤ 𝑤. For the final phase, there is just sliver
burning. This means that the port surface area will be an arc length calculation, but first, the angle must be found. Using
trigonometry (Fig. 11), the overall angle from the start of the fillet can be calculated as:

𝛽 = (𝜋/2) − (𝜃/2) + (𝑒𝜋/𝑛∗). (29)

1
2

3

4

Fig. 10 The four sections that the total
area is divided into during the second
phase.

βε
δ

Fig. 11 The angles governing where
the arc begins and ends relative to its
original angle.
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To find the angle over which the arc length is not exceeding the outer diameter or edge of the star-section, two more
angles must be derived (Fig. 11):

𝛿 = tan−1
(√︃

( 𝑓 + 𝑦)2 − (𝑟𝑝 sin(𝑒𝜋/𝑛∗))2/(𝑟𝑝 sin(𝑒𝜋/𝑛∗))
)
− (𝜃/2), (30)

𝜀 = 𝜋 − cos−1
(
−
(
(𝑟𝑜)2 − (𝑟𝑝)2 − ( 𝑓 + 𝑦)2

)
/(2𝑟𝑝 sin( 𝑓 + 𝑦))

)
, (31)

∴ 𝐴𝑝 = 2𝑛∗𝑁𝑔𝐿𝑔
(
( 𝑓 + 𝑦) (𝛽 − 𝛿 − 𝜀)

)
. (32)

For the end area during sliver burning, previous works either omit the area as final losses or approximate the area
with an equation that will cause a discontinuity during the switch from the second to third burn phase. To avoid this,
a linear approximation was used to assume that during the brief sliver burning, the end area progresses linearly to
zero. While this approach is not exact, it lowers the error margin to provide a more realistic result of the overall burn,
particularly during this final phase. This is a key point of improvement for this model moving forward. This linear
approximation is calculated with the max burn distance, intercept, and slope:

𝑦max =

√︃
(𝑟𝑜 − 𝑟𝑝 cos(𝑒𝜋/𝑛∗))2 + (𝑟𝑝 sin(𝑒𝜋/𝑛∗))2 − 𝑓 , (33)

𝑖 = (𝜋𝑟2
𝑜) − (𝑚𝑦max), (34)

Let ℎ = 𝑟𝑝 sin(𝑒𝜋/𝑛∗), then:

m =

(
𝜋𝑟2

𝑜 − 𝑛∗
(
(𝜋/2) + (𝑒𝜋/𝑛∗) − tan−1 (

√︁
( 𝑓 + 𝑤)2 − ℎ2/ℎ)) ( 𝑓 + 𝑤)2 + (cot(𝑒𝜋/𝑛∗))ℎ2 + ℎ

√︁
( 𝑓 + 𝑤)2 − ℎ2 + (𝑟𝑝 + 𝑓 + 𝑤)2 ((𝜋/𝑛∗) − (𝑒𝜋/𝑛∗)

))
(𝑦max − 𝑤)

, (35)

∴ 𝐴𝑒 = (𝑚𝑦) + 𝑖. (36)

Now that the burn progression for a typical star is established, the second scenario presented in Fig. 6 can be
addressed. Here, the entire burn consists only of the previously defined first and third phases as 𝑆1 remains until the
burn is finished. Both the port and end surface areas can be calculated as before for the first phase. For the final phase,
since the web has burned through, 𝑆3 will not be present, so only 𝑆1 and 𝑆2 need to be defined. To calculate 𝑆1, a series
of angles and lengths must be derived:

𝜇 = (𝑒𝜋/𝑛∗) + (𝜋/2) − 𝛽, (37)

𝜁 =

√︃
(𝑟𝑝 sin(𝑒𝜋/𝑛∗))2 + 𝑦2 − 2𝑦(𝑟𝑝 sin(𝑒𝜋/𝑛∗)) cos(𝜇), (38)

𝜅 = (𝜋/2) −
(
sin−1 (𝑦 sin(𝜇))/𝜁

)
, (39)

∴ 𝑆1 = (𝜁 sin(𝜅))/(𝜋 − (𝜃/2)). (40)

The calculation for 𝑆2 during the final phase is almost the same as before; though, the angle 𝛿 is unnecessary, therefore:

𝑆2 = ( 𝑓 + 𝑦) (𝛽 − 𝜀), (41)

∴ 𝐴𝑝 = 2𝑛∗𝑁𝑔𝐿𝑔 (𝑆1 + 𝑆2). (42)

To find the end area of the remaining sliver, a similar approximation is used as before. In this case, however, since 𝑆1 is
a straight line, the area can be better approximated as a triangle, where the height is:

ℎ𝑡 = 𝑟𝑜 − (𝑦 csc(𝜃/2)) −
(
(𝑟𝑝 sin((𝜃/2) − (𝑒𝜋/𝑛∗)))/sin(𝜋 − (𝜃/2))

)
, (43)

𝐴𝑡 = (1/2)ℎ𝑡
√︃
(𝑆1 + 𝑆2)2 − ℎ2

𝑡 , (44)

∴ 𝐴𝑒 = 𝜋𝑟
2
𝑜 − 2𝑛∗𝐴𝑡 . (45)
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D. Simulation Output Calculations
With the burn surface area expressions, the motor performance values can be found. Flow conditions through the

nozzle are assumed to be isentropic [1], allowing isentropic relations to be used to find the Mach number of the flow, the
optimal nozzle exit diameter, the exit exhaust pressure, and the exit temperature. Readers are directed to Ref. [1] for the
derivations of these values. The exit velocity of the flow follows as:

𝑣 = 𝑀
√︁
𝛾𝑅𝑇exit. (46)

Thrust can then be calculated as:
𝐹𝑡 = ¤𝑚𝑣 + 𝐴exit (𝑃exit − 𝑃atmospheric). (47)

Lastly, total impulse can be found by numerically integrating thrust with respect to time.
The prior burn area and motor performance equations were implemented into a MATLAB program that looped through

iterations of the motor state as the burn progresses. The results of the pointed stars were then successfully validated against
other commercial off-the-shelf (COTS) simulations. Then, as there is no publicly available program that simulates filleted
stars, sample grains were created in SolidWorks, a computer-aided design (CAD) software. The port and end areas could
then be found using the evaluation tools in SolidWorks. This was done at multiple points during the burn and in different
phases of the burn. Analysis performed for various different grain geometries across all main burning scenarios agreed
with the MATLAB simulation model. A sample of the grain recreations and analysis in SolidWorks can be seen in Fig. 12.

Fig. 12 A sample of the area calculations performed in SolidWorks. Note, the third image only measures the 1/8th of the total area.

E. Grain Selection
For the motor designed in this paper, a star grain geometry was selected to experiment with achieving a flat thrust

curve. As the nozzle can only be optimized for a single pressure value, achieving a steady state pressure close to the
optimal pressure value over longer durations greatly improves motor efficiency. An eight-pointed star with no fillet was
used with a maximum expected operating pressure (MEOP) of 1008 psi. The total burn time was 4.504 seconds with a
total impulse of 4066.5 lbf·s. The performance graphs shown in Fig. 13 illustrate the flat thrust curve that was simulated.
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Fig. 13 The main performance graphs of the selected grain geometry.

IV. Motor Design and Analysis
The key structural components of an SRM are the motor casing, the closure retention systems, the nozzle assembly,

and the igniter. The structural design of the SRM began with an understanding of the specific design constraints given by
the MATLAB motor simulation. Other dimensional constraints came from the inner and outer diameter dimensions of
the selected casting tubes and thermal liners. The design of the motor casing can begin with these diameter dimensions.
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A. Motor Casing
The phenolic thermal liners slide into the motor casing to protect it from the heat of the combustion chamber. The

selected liners had an outer diameter of 3.486 in, allowing it to fit within an motor casing with an inner diameter of 3.5
in. The motor casing must also withstand the internal pressures during the burn to avoid a casing burst or leakage. It is
thus necessary to choose a material that can withstand the stress predicted by the MATLAB simulation.

Aluminum 6061-T6 was chosen as the casing material due its ease of machining, availability, and cost-effectiveness.
The structural integrity of the aluminum motor casing was evaluated at MEOP in Ansys Mechanical, a commercial finite
element analysis software. A fixed pressure was applied on the inside faces of the full assembly, which was connected
through bonded contacts. Then, a fixed support was added to one side, producing the result shown in Fig. 14.

The maximum stress of around 9,000 psi was located on the inside of the casing tube. As aluminum 6061 has a yield
strength of 40,000 psi [4], the casing factor of safety was calculated to be 4.4. A minimum safety factor of two was set
as a design requirement for all parts to ensure a confident safety margin. Note that the temperature increase of the motor
casing is negligible due to the low burn time and the insulation of the thermal liner. The length of the motor casing was
determined by the geometry of the nozzle assembly and retention systems described in the following sections.

B. Retention Systems and Closure
The retention systems secure the forward bulkhead and nozzle assembly to the motor casing. During the burn of

the motor, the chamber will experience high pressure, pushing the forward bulkhead and nozzle assembly outward.
Multiple different retention methods are used in the aerospace industry, including pins, snap rings, and bolts. After
careful consideration, pins were selected for their ease of installation and reliability. The pins are inserted into a ring
that acts as a physical block to secure the bulkheads to the casing (Fig. 15).

A complex stress field is created around the pins as they attempt to tear through the steel casing and retention ring.
Therefore, to select the number and diameter of pins to use for retention, a full forward closure simulation was conducted
where the bulkhead and pin ring were allowed to slide inside the casing through the implementation of frictionless
contacts (Fig. 15). A pressure of 1008 psi was applied to the inside face of the bulkhead, and a smaller mesh sizing was
applied to the pins and pin holes, granting better resolution of the tear-through stresses formed. With 10 3/8-inch pins
at each end of the casing, the minimum factor of safety remained above 3 for non-pin components; however, further
analysis was required to validate the pins themselves.

As the pins experience a high stress state, alloy steel 4140 was selected as the pin material due to its high strength
and stiffness [5]. To accurately model the stresses experienced by a pin in a shear state, the pin geometry was imported
into Ansys Mechanical. Then, as shown in Fig. 16(b), two blocks were created around the pin, creating a shear line
in the middle of the pin. One block was fixed while the other had a pressure force applied to it, mimicking the shear
force expected by each pin. Moreover, a displacement constraint was applied to the pressure block, allowing it only to
move in the shear direction. With decreased mesh sizing, the simulation (Fig. 16(a)) demonstrates that stresses are not
expected to exceed 25000 psi, giving a factor of safety of 5.6.

Fig. 14 Casing pressure vessel stress
simulation.

Fig. 15 Forward closure and pin ring
analysis.

b.a.

Fig. 16 Locking pin shear stress simula-
tion.

The pin ring was designed with a thickness of 0.18 inches. In this design, there are 2 pin rings: one located in the
forward closure and the other in the nozzle extension (Fig. 15). Note that the nozzle assembly pin ring is not a separate
part like the forward pin ring; instead, it is embedded within the nozzle extension to reduce the number of parts involved
in the nozzle assembly.

While designing the pin ring, it would have been prudent to run a bearing stress analysis. Bearing stress is the
pressure caused by the contact between two objects. Consequently, it would have been preferable to create a pin with a
larger width to have a greater factor of safety. As such, this analysis should be reflected in future motor designs.
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C. Forward Bulkhead
The forward bulkhead holds pressure inside the casing and, as mentioned before, is retained onto the motor casing

by the forward pins and pin ring. The design constraints for the forward bulkhead consist of the MEOP and the expected
chamber temperature. For this SRM, stainless steel 304 was chosen for its high melting temperature and tensile strength
of over 140,000 psi [5]. The width of the bulkhead was determined by structural analysis in Ansys Mechanical to
achieve a FOS of above 3 (Fig. 22). The bottom face of the bulkhead has a cavity to remove unnecessary material to
lower overall design mass. A fillet was added to the cavity’s inner edges to reduce stress concentrations. The bulkhead
analysis is shown with exaggerated deformation in Fig. 22.

D. Nozzle Assembly
The key design components of a nozzle are its converging and diverging half angle and the throat and nozzle exit

diameters. The dimensions given from the MATLAB burn simulation determine the diameter dimensions for optimal
flow expansion, and the half angles were selected based on previous research on ideal nozzle geometries [6]. The
optimal convergence half angle is 60 degrees and the optimal divergence half angle is a range from 12-15 degrees. For
this SRM, a converging half angle of 60 degrees and a diverging half angle of 13.5 degrees was chosen (Fig. 20). The
throat diameter was 1.038 in. and the nozzle exit diameter was 3.100 in. (Fig. 18), selected based on the performance
simulation. The nozzle can be sized according to these parameters.

There are multiple avenues for choosing how to design the nozzle, with design considerations such as temperature
and stress. A three-piece nozzle assembly was chosen consisting of a graphite inner throat, which can withstand a
combustion temperature 4890°R [7], assumed to be identical to the stagnation temperature of the flow and is dependent
on the selected propellant. O-rings were selected using a publicly available online o-ring calculator. For this motor,
o-ring dash number 152 was used for all o-rings.

Both structural and thermal analysis were necessary to validate the nozzle’s safety. In Ansys mechanical, fixed
supports were placed on the pinholes with friction-less contacts assigned between all bodies. The graphite was given a
decreased mesh sizing as it is the focus of this simulation. As shown in Fig. 21, the pressure exerted on the nozzle
creates a significant stress on the graphite insert. These stresses are concentrated at the nozzle throat and the lower
o-ring grooves, allowing for a minimum safety factor of 3.2.

To validate the MATLAB grain burning simulation and provide temperature data for further thermal simulation, a
fluid analysis model was set up in Ansys Fluent, a commercial CFD software. By implementing face meshing and
reduced element sizings inside the nozzle, an accurate 2D axisymmetric mesh was generated. Then, a pressure inlet
was assigned to the inside of the nozzle, and a pressure outlet at the plume. The realizable k-𝜖 model was used for
turbulence, and the Sutherland for viscosity [8].

As illustrated in Fig. 17, the simulation verifies that the nozzle is well expanded, with the exit flow pressure being
similar to the atmospheric. Moreover, the model’s estimated thrust of 1349 lbf supports the 1317 lbf predicted by the
MATLAB simulation.

Fig. 17 CFD nozzle plume analysis.

The last component of the nozzle is the carrier for the graphite insert, which uses a stronger, less brittle, material
that can better withstand the chamber pressures exerted on the assembly. Thus, stainless steel 304 was chosen due to its
high melting temperature of 2500°F and its ability to withstand the stresses at MEOP with a FOS of over 3 [5]. Lastly,
the carrier additionally needs to be able to interface with the graphite insert to retain the proper converging half angle.

The nozzle experiences very high heat loads during the burn; the high temperatures, coupled with the high-velocity
flow lead to forced convection. Any slight deformation of the nozzle’s interior surface may cause shocks to form inside,
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reducing the nozzle’s efficiency or even potentially causing catastrophic failure. To evaluate the ability of the nozzle
components to withstand such heat loads, a transient thermal simulation model was implemented. A mesh was generated
with graphite assigned to the throat insert. With a predicted stagnation temperature of 4890°R and a heat transfer
coefficient of 2500𝑊/𝑚2𝐾 [9], a very conservative convection model was applied to the inside faces of the nozzle.

The simulation (Fig. 19) shows that the graphite insert effectively conducted heat away from the surface, cooling
it enough to prevent softening or melting. The components, including o-rings, remained well below their maximum
service temperatures, providing confidence for the heat resistance of the nozzle.

a.

b.

c.

Fig. 18 The full nozzle assembly: a.
The graphite insert b. The nozzle car-
rier c. The nozzle extension.

Fig. 19 Nozzle thermal analysis.

13.5°60
°

a. b.

Fig. 20 a. The converging half angle
b. The diverging half angle.

E. Ignitor
The final component of a SRM is the igniter, which initiates the propellant burn of the motor. There are two main

types of ignition methods; head-end ignition and aft-end ignition. Aft-end ignition is simpler as the wires can be run
up through the nozzle, removing most of the machining complexity and other structural considerations. However, the
igniter wires must therefore be routed externally from the avionics bay of the rocket down to the nozzle, which may
cause sizing issues as a larger airframe around the motor may be required. This can only be avoided by powering the
igniter from a source not connected to the rocket, such as a launchpad.

Hence, head-end ignition is very beneficial for sustainer stages in multistage rockets, where external wires will likely
fail due to drag forces, or if the rocket needs to be self-sufficient and able to ignite using on-board power. Thus, due to
its broader use cases, head-end ignition was selected, with the igniter integrated into the forward bulkhead design. This
igniter works by lighting a small propellant puck inside a chamber with 8 holes radially drilled, redirecting the flames
into the star-grain cavities to ensure an even ignition. A small wire is routed through a hole into the igniter chamber that
connects to the propellant. Since, the igniter is installed within the forward bulkhead, a gasket is required to maintain a
proper pressure seal. Graphite was selected for the gasket, and stainless steel 304 for the igniter, both due to their ability
to withstand the high chamber temperatures.

Fig. 21 3-Piece nozzle assembly struc-
tural simulation.

Fig. 22 Forward bulkhead analysis. Fig. 23 Ignitor thermal analysis.

Nevertheless, if the temperature inside the chamber stays too hot for an extended period, the igniter assembly could
melt and damage the propellant grains and nozzle throat. To evaluate the likelihood of this happening, a transient
thermal simulation was conducted in Ansys. Convection was applied to all exposed faces of the assembly, using a
surrounding temperature of 4890°R, which was predicted using isentropic relations, and a convection coefficient of
25.32𝑊/𝑚2𝐾 [10] . As shown in Fig. 23, the temperature of the igniter does not rise significantly during the short burn
time, implying that it is very unlikely to melt.

10



F. Final Considerations
The final design can be seen in Fig. 24. A modified version of this motor was approved by GTXR to be funded,

constructed, and static fired. The static fire will occur in late April of 2024, after which the results can be analyzed
to assess the accuracy of the modeling and simulation, as well as improve on the design process established out in
this paper. Additionally, the motor performance simulation remains under development to increase its accuracy and
applicable use cases.

Fig. 24 The full motor assembly.
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