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It is well known that higher-order numerical schemes must be reduced to a monotonic
scheme in the vicinity of shocks to eliminate spurious oscillations across them. This increases
the dissipative characteristics of the scheme in a way that eliminates these errors. However, the
increased dissipation is not desirable in regions away from shocks since it can severely damp
important flow characteristics. The typical way in which this tradeoff is managed is through the
use of flux limiters (or equivalently shock sensors), that are optimized to activate the monotonic
behavior in the vicinity of a shock, but retain the high-order characteristics of the scheme
elsewhere. This “optimization” problem becomes challenging in highly unsteady turbulent flow
environments since the flux limiters are constructed using various gradient ratios in the flow to
sense the presence of a shock. Thus, the shock capturing accuracy of flux limiters can behave
poorly when used for Large Eddy Simulation (LES) of turbulent supersonic and hypersonic
flows. The gradients associated with the broadband turbulence being resolved tends to activate
the sensors, thus making them very “noisy” throughout the flow field instead of being activated
only in the vicinity of shocks. This noisy behavior can significantly degrade the quality of
the LES since it introduces significant dissipative errors that damp out important unsteady
turbulent flow structures. In this work, several flux limiting and shock capturing schemes are
compared for a Mach 2.5 boundary layer flow. In particular, a modified Van Leer flux limiting
method’s parameters are varied and evaluated. Numerical efficiency is also investigated for
cost-error tradeoff assessment.

I. Introduction
In higher fidelity CFD solvers, such as Large Eddy Simulation (LES) and Direct Numerical Simulation (DNS),

a large range of length scales must be resolved. To computationally simplify this problem, non-dissipative compact
schemes are introduced to numerically smoothen the field, saving computational time and resources while maintaining
a high degree of accuracy. However, when these schemes interact with steep gradients, they produce unfavorable
oscillations[1]. In high speed flow, this occurs at shock waves. Further challenges are introduced when the flow becomes
turbulent. Turbulence gradients may converge, however, due to their small scale, there is large potential for aliasing
[2], which can lead to numerical instability or artificial decay of the turbulence. Gibbs phenomenon as described by
Ducros[3] shows that these oscillations do not decrease in amplitude, even with a finer more resolved grid. Alternatively,
non oscillating schemes also exist, but lack the same level of accuracy. For this reason, it is beneficial to create a
different function, known as a flux limiter, that can identify the location of these harsh gradients and introduce artificial
dissipation in order to reduce these oscillations. Optimizing flux limiters thus becomes a crucial task, as an overactive
limiter would degrade the performance of the higher order compacting scheme, as the entire flow field would have this
dissipation introduced. On the other hand, an under-active limiter would prevent shock detection which would lead to
the aforementioned spurious oscillations and numerical instabilities.

In this study, a modified version of the van Leer flux limiting scheme is tested and compared to a baseline. In the
modified van Leer limiter, a sensitivity parameter is introduced and varied and its effect on the flowfield and resultant
statistics are compared. This data is then compared with DNS to benchmark and select the best sensitivity.

II. Approach
The modified van Leer flux limiting scheme is analyzed through wall-resolved large eddy simulations (WRLES) of a

Mach 2.5 boundary layer flow. Scheme parameters are also varied to examine their effects on instantaneous flowfields,
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as well as several statistical quantities. Cases are simulated using the hybrid LES/DNS code RAPTOR. The baseline
scheme is a high-order artificial dissipation scheme, which is used to establish a baseline performance metric against
which the modified van Leer limiting scheme is compared. Details of the governing system of equations, limiting
schemes, and case setup and design are presented below.

A. Governing equations
The LES is governed by the filtered Navier-Stokes equations, cast into non-dimensional, finite-volume form. In

the following equations, overbars indicate filtered variables, where as Favre-decomposed resolved-scale variables are
represented by tildes. Subfilter-scale quantities are identified by a double prime. Cartesian tensor notation with Einstein
summation convention is also employed.
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where, 𝜎𝑖 𝑗 represents the filtered viscous stress tensor,
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and 𝑇𝑖 𝑗 represents the turbulent momentum flux tensor,
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where the Favre-resolved total energy, internal energy, and enthalpy are represented, respectively, as
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Energy diffusion due to heat conduction is captured in an analogous manner to the instantaneous system using
Fourier’s law,
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Finally, the turbulent enthalpy flux in the filtered energy equation is
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The subfilter stresses and fluxes are modeled using a compressible generalization of the Smagorinsky model [4]
with the scale-similarity model proposed by Speziale [5]. Geurts [6] and Stolz and Adams [7] have shown that this
approach can be generalized within the mathematical formalism of inverse methods and the approximate deconvolution
model. Following Erlebacher et al. [8], the deviatoric part of the turbulent momentum flux tensor appearing in Eq. (2) is
given by
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where the resolved strain rate tensor, 𝑆𝑖 𝑗 , is given as
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The quantity Re is a reference Reynolds number and is an artifact of the non-dimensionalization. The Kronecker delta
tensor is denoted as 𝛿𝑖 𝑗 , and the turbulent viscosity is calculated as

𝜇𝑡

Re
= 𝜌𝐶𝑅Δ

2 (𝑆𝑖 𝑗𝑆𝑖 𝑗 ) 1
2 . (6)

In Eq. (6), 𝐶𝑅 is a dynamically evaluated modified Smagorinsky coefficient [9–11] and Δ is the filter width taken to be
the cube-root of a given cell volume in this work. The isotropic part of the turbulent momentum flux tensor is closed
using the Yoshizawa model [12] as

𝑇 𝐼
𝑖 𝑗 =

2
3
𝐶𝐼 𝜌Δ

2𝑆𝑘𝑙𝑆𝑘𝑙𝛿𝑖 𝑗 , (7)

where all terms maintain their previous definitions and 𝐶𝐼 is the isotropic Smagorinsky coefficient, also computed
dynamically. The final model form is obtained by summing the isotropic and deviatoric parts.

The subfilter energy flux is modeled using the dynamic gradient diffusion model [13], which makes use of a turbulent
analog of Fourier’s law of heat conduction. The non-dimensional form of the model is

𝑄 𝑗 = − 𝜇𝑡

𝑅𝑒

𝐶𝑝

𝑃𝑟𝑡

𝜕𝑇
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. (8)

The quantity 𝜇𝑡/𝑅𝑒 takes its definition from Eq. (6) and 𝑃𝑟𝑡 is a turbulent Prandtl number that is modeled dynamically.
The system of equations above are solved in parallel using the RAPTOR code framework, which has been developed

with significant effort invested on verification validation, and optimization. Time integration is performed using a
semi-implicity Runge-Kutta formulation, set up to be fourth-order accurate in time. The spatial scheme is second-order
accurate and designed using non-dissipative, discretely-conservative, Kinetic-Energy-Preserving – Entropy-Preserving
(KEP-EP) finite-volume differencing [14–18], which minimizes numerical contamination due to artificial dissipation
and the artificial build up of energy at the high wavenumbers. Details on the computational approach and parallelization
strategy are given by Oefelein et al. [19–21].

B. Tested Limiting Schemes
In the baseline case, no limiting scheme is applied. In the presence of strong shocks, this case would fail due to high

oscillations during computation. The Van Leer limiter is defined by equation 9[22]. The modified version of the limiter
in RAPTOR allow for a sensitivity input, 𝜀, which allows for more granular control over what is detected.

𝜙𝑣𝑙 (𝑟) = 𝑟 + |𝑟 |
1 + 𝑟

(9)

C. Case Setup
Cases simulate a Mach 2.5 compressible boundary layer, with the Mach 2.5 DNS case by Zhang et al [23] used as a

reference DNS case. This flow was selected, as it is slow enough to converge without a limiter, but fast enough that a
limiter can be applied and compared. The computational domain is smaller than the original Zhang et al [23] DNS due
to computational feasibility limits. See Fig. 1 for the case schematic, including boundary conditions. Cases employ a
660 × 255 × 100(𝑛𝑥 × 𝑛𝑦 × 𝑛𝑧) grid, with grid generation following the traditional WRLES grid stretching guidelines.
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Fig. 1 Case schematic. Domain is reduced compared to the domain of the Zhang et al reference DNS case [23],
due to computational feasibility reasons.

Case Tw/Tr Reference Data Limiting scheme
Baseline 1.0 Zhang et al Mach 2.5 BL N/A
mvL001 1.0 Zhang et al Mach 2.5 BL modified van Leer
mvL01 1.0 Zhang et al Mach 2.5 BL modified van Leer
mvL025 1.0 Zhang et al Mach 2.5 BL modified van Leer
mvL050 1.0 Zhang et al Mach 2.5 BL modified van Leer

Table 1 Table of case parameters. Reference data for all cases is Zhang et al [23] Mach 2.5 turbulent boundary
layer DNS.

The first cell is within one 𝑦+ unit through the domain, and cells are stretched gently away from the wall to a maximum
value of Δ𝑥+

𝑖
= 20 for all cells, making freestream cells approximately orthogonal. While the top surface of the domain

allows for waves to reflect back onto the boundary layer, the height of the domain is tall enough, and the axial length
short enough, to avoid any contamination issues stemming from this confinement. Additionally, the domain is wide
enough in the spanwise direction to allow for statistical decoupling, enabling the use of the spanwise periodic boundary
condition.

See Table 1 for a summary of the cases including notation used in the rest of this work to refer to the cases. Inflow
turbulence is generated using the ensemble synthetic eddy method [24], using the Zhang et al [23] DNS as reference
data for all cases. The first case is used to establish a performance baseline and does not employ a shock-capturing
scheme. The subsequent cases then systematically vary the modified van Leer parameters.

III. Results and Discussion

A. Validation
First, the baseline case is evaluated. Reynolds stresses are plotted against the reference DNS data. See Fig. 2 for the

Reynolds stress results. Clearly, the results follow the overall trends quite closely, with some over-estimation.
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(a) 𝑅𝑢𝑢, Streamwise Componen (b) 𝑅𝑢𝑣 , Shear Component

(c) 𝑅𝑣𝑣 , Wall-normal Component (d) 𝑅𝑤𝑤 , Spanwise Component

Fig. 2 Reynolds stresses for the baseline case compared against the reference DNS. Red symbols correspond to
the reference DNS case of Zhang et al. [23]. Black solid line corresponds to the baseline case.

Additionally, see Fig. 3 for the mean velocity profile, taken at approximately 𝑥/𝐿𝑟𝑒 𝑓 = 15.0. Results follow the
incompressible theory quite closely, with a clear linear log region. The thin black line is the incompressible log-law,
given as:

𝑈+ =
1
𝜅
𝑙𝑜𝑔(𝑦+) + 𝐵, (10)

where 𝜅 is taken to be 0.41 and 𝐵 is taken to be 5.1, is included as the thin black line. The quantity 𝑌+ refers to the
semi-local wall-normal coordinate. The quantity 𝑈+𝑇𝐿 is the semi-local 𝑈+. Both quantities are defined in Trettel and
Larsson [25], this scaling has been found to better account for non-adiabatic walls.

B. Modified Van Leer Fields
Instantaneous and averaged plots were gathered and compared for each epsilon value tested. Every test was conducted

at the same time step, so the fields were essentially the same for each limiting case. The shock is visible in Fig.4, and
serves as a comparison point with each following figure. See Fig.5 and Fig.6 for the non linear and linear flux limiting
scheme for each epsilon parameter. The non-linear parameter is associated with pressure, while the linear is associated
with temperature and density.
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Fig. 3 Baseline case mean velocity profile compared against incompressible theory. Thin black line is the log-law
given by Eqn. 10, with the thin red line corresponding to the same equation, except with y-intercept instead
change to 10.

Fig. 4 Pressure distribution at the tested timestamp and conditions.

(a) 𝜀 = 0.01 (b) 𝜀 = 0.1

(c) 𝜀 = 0.25 (d) 𝜀 = 0.5

Fig. 5 Nonlinear shock sensor fields for the Mach 2.5 case. Equivalent to 1− flux, higher numbers mean more
dissipation will be introduced at that location. Each graph has the same scale
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(a) 𝜀 = 0.01 (b) 𝜀 = 0.1

(c) 𝜀 = 0.25 (d) 𝜀 = 0.5

Fig. 6 Linear shock sensor fields for the Mach 2.5 case. Equivalent to 1− flux, higher numbers mean more
dissipation will be introduced at that location. Each graph has the same scale

.

It can be seen that lower 𝜀 values lead to the introduction of more dissipation. As 𝜀 increases, the shock wave slowly
fades, but the near wall turbulence still receives dissipation.

See Fig.7 for the time averaged flux limiter field. The smoothness of these plots in comparison to Fig.6, shows the
importance of having a flux limiter that works at every timestep, and that it is not beneficial to simply mask an area and
switch solvers there. Because of the unsteadiness of turbulence, it is important to integrate the limiter into the solver.

(a) 𝜀 = 0.01 (b) 𝜀 = 0.1

(c) 𝜀 = 0.25 (d) 𝜀 = 0.5

Fig. 7 Time average of linear shock sensor fields for the Mach 2.5 case.
.

C. Statistics
To benchmark the performance of each limiter, the Reynolds stresses are plotted and compared to the DNS data in

Fig.8. In Fig.8.a it can be seen that the lower 𝜀 led to results that diverged more compared to a higher 𝜀. This indicates
that artificially introducing too much dissipation is harmful, and further shows the importance of optimizing the limiter
so that the solution converges, but does so with accuracy. The shear stress graph in Fig.8.b shows that shear stresses
are overestimated for each 𝜀 value, but each 𝜀 is overestimated the same amount. This indicates that the dissipation
introduced for near wall turbulence artificially increased the shear stresses. Hence, having a sensor that is not sensitive to
the broadband turbulence fluctuations, such as the Ducros sensor, would be more attractive than one that also attenuates
physical turbulence gradients.
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(a) 𝑅𝑢𝑢, Streamwise Component (b) 𝑅𝑢𝑣 , Shear Component

(c) 𝑅𝑣𝑣 , Wall-normal Component (d) 𝑅𝑤𝑤 , Spanwise Component

Fig. 8 Reynolds stresses for the modified Van Leer case compared against the reference DNS. Red symbols
correspond to the reference DNS case of Zhang et al. [23]. Black solid line corresponds to the baseline case.

The mean velocity is plotted in Fig.9. It is scaled using the same methods as in Fig.3. using Trettel-Larson[25].The
higher the 𝜀 value, the closer the solution approaches the baseline case. In more sensitive schemes, the near wall velocity
is artificially increased from the dissipation.
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Fig. 9 Modified Van Leer case mean velocity profile compared against incompressible theory. Blue line
represents 𝜀 = 0.5 and green dotted line represents 𝜀 = 0.01. Thin black line is the log-law given by Eqn. 10, with
the thin red line corresponding to the same equation, except with y-intercept instead change to 10.

IV. Conclusion and Future Work
Further analysis of various limiting schemes should be conducted to find a balance between efficiency and accuracy.

Further work will include analysis of the more complex Ducros flux limiter, as well as analysis of Mach 8 flow with a
more defined shock. Another important case to consider is when there are shock boundary layer interactions, in order to
ensure that an appropriate amount diffusion occurs in the correct places for convergence.
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