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The study of combustion dynamic processes commonly involves the use of acoustic signals
and measurements of flame response. Combustion dynamics describes a positive feedback effect
in combustion systems where there is a cycle of heat release, velocity, and pressure fluctuations
in a combustor flow field. If left unchecked, pressure amplitudes that result from the feedback
can catastrophically damage a combustion system like a rocket motor or gas turbine combustor.
Currently, the standard is to use fixed-frequency measurements using acoustic forcing from
speakers or sirens. There is a natural trade-off between the resulting frequency resolution and
the time required to complete a frequency sweep over a bandwidth of interest. Incomplete
spectral information is obtained if the frequency steps are too large but long experimental
runs are required if a high resolution result is desired. The trade-off results in greater expense
associated with additional compressor, fuel, and labor costs for high-frequency resolution
measurements. This work demonstrates a method to replace fixed-frequency measurements
with a chirped-frequency technique, allowing for faster measurements and nearly continuous
frequency resolution. Two experiments are discussed to demonstrate the technique in simple,
room-temperature experiments. The first is a transfer function measurement on a sense
tube which is normally used in combustion experiments. The sense tube protects a delicate
pressure transducer from elevated temperatures by installing the transducer on a standoff tube
away from a combustion chamber. The second experiment discusses the effects of acoustic
impedance from the endwall of an acoustic chamber. In the first experiment, the traditional
fixed-frequency measurement is directly compared to the chirped-frequency technique. In the
second experiment, an experimental setup and procedure is discussed.

I. Nomenclature

𝐴 = amplitude of oscillation
𝑓 = frequency of oscillation
𝑑 𝑓

𝑑𝑡
= rate of change of frequency

𝑇 = period of oscillation
𝜔 = angular frequency of oscillation
𝜙 = phase of oscillation
𝛼, 𝛽 = generic angles
𝑡 = time
d𝑡 = time step
𝑥, 𝑦 = generic functions
𝑝 = pressure
𝐿 = length
𝑐 = speed of sound
𝑍 = acoustic impedance
𝜌 = density
𝑘 = wave number
𝑟 = acoustic reflection factor
𝑖, 𝑗 = imaginary constant
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II. Introduction

In the testing of combustion dynamic processes, the use of acoustic signals to measure flame response is commonplace.
Currently, the standard is to use fixed-frequency measurements. There is a trade-off between the time it takes to take

fixed-frequency measurements and the resulting frequency resolution. A greater time to take measurements results
in greater costs in the form of fuel and labor, while an incomplete frequency resolution results in gaps in data. A
chirped-frequency measurement, on the other hand, would be able to provide a near continuous frequency resolution in
the same time as a fixed-frequency measurement. Chirped-frequency measurements, or swept-sine measurements, have
previously been applied for measuring acoustics in large rooms such as concert halls by measuring the acoustic response
in different locations and then processing the data [1]. This paper aims to demonstrate a proposed method to apply a
similar technique to acoustic combustion dynamic measurements.

The experimental setup consists of a tube with a speaker on one end and the other end open. The tube has two
pressure transducers located at the open end, one connected directly into the tube, and another located far from the tube
on a semi-infinite sense tube. During combustion measurements, pressure transducers must be located far away from the
flame to avoid damage, however, the further the signal must travel, the more it will attenuate. A transfer function creates
a map from the pressure recorded on the sense tube and the pressure inside the combustion chamber. The experimental
setup recreates a typical transfer function combustion measurement. In fixed-frequency measurements, amplitude of the
pressure response was determined via an analog lock-in amplifier. A lock-in amplifier is a device that can be used to
determine a periodic signal’s amplitude in narrow bandwidth and is effective in noisy environments.

A method of determining the amplitude of a signal resulting from a source that is swept through a range of frequencies
(i.e, a chirped signal) was developed by using a reference phase technique. A reference phase method uses the integral
of frequency to create a reference phase signal which can be used in a digital lock-in amplifier algorithm to determine
the amplitude of a chirped-frequency signal. The fixed-frequency measurements taken using a lock-in amplifier and the
chirped-frequency results processed digitally were directly compared and showed significant similarities.

For future measurements, a tube with a perforated end will be used to compare fixed-frequency and chirped
measurements of acoustic impedance. Furthermore, the tube will be instrumented in such a way as to create conditions
in which the frequency of the signal travelling through it cannot be assumed to be constant. These spectral conditions
will be achieved by modifying the chirp’s rate of change of frequency, tube length and instrumentation location, and
speed of sound inside the tube.

The following sections will discuss the setup, methodology, and results of the two experiments. Section III will
discuss the design of the transfer function experiment and the necessary equipment. It will also cover the methodology
in acquiring and processing data, the architecture of lock-in amplifiers, and the digital algorithm (ULIA) for processing
chirped-frequency signals. It also covers measures taken to reduce electrical noise in the systems. Section IV will cover
processed data from the transfer function experiment and discuss the results, including topics such as filters, errors, and
various chirp durations. Section V will discuss specific design and analysis changes necessary for acoustic impedance
measurements. Section VI will conclude the findings and discuss future research.

III. Design and Methodology of a Transfer Function Experiment
For the transfer function experiment, a straight tube with a nonporous inner surface is used. The tube has a speaker,

an open end, and two acoustic sensors. The tube used was also able to vary in length. The speaker is driven by a
function generator audio-amplifier combination to create chirped acoustic signals. In the fixed-frequency setup, data
is collected with the acoustic sensors that connect to a signal conditioner. The signal from the conditioner is then
processed by a lock-in amplifier. The function generator sends a reference signal of the same frequency as the driving
frequency of the speaker to the lock-in amplifier. In chirped-frequency experiments, the lock-in amplifier is removed
and the signal from the conditioner is routed to an oscilloscope. Data is recorded on the oscilloscope and processed on a
computer. The experiment is largely inspired by Boyle, Henderson, and Hultgren’s experiments [2]. The physical setups
in both variations are detailed in Fig. 1. Once data is collected, a transfer function can be determined by finding the
ratio between transducer 2 and transducer 1, and the difference in phase between the two.
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Fig. 1 Diagram of transfer function experimental setup.

The transducer labeled "Reference PT" is henceforth referred to as "Transducer 1" and "PT" is referred to as
"Transducer 2" in this paper.

A. Fixed Frequency Measurements
Fixed-frequency measurements were acquired between the range of 300 and 2500 Hz. First, a measurement was

taken every 200Hz. An interval of 200 Hz was not enough to adequately define the peaks, so more measurements
were taken in intervals of 10 Hz between 600 Hz and 800 Hz. Measurements were taken by adjusting the frequency of
the signal generated by the function generator, as well as the frequency of the reference signal provided to the lock-in
amplifier. The lock-in amplifier sensitivity was optimized to maximize the signal resolution. The value from the lock-in
amplifier was then recorded on a computer.

Fig. 2 Simplified block diagram of analog lock-in amplifier.
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B. Chirped Frequency Measurements
Chirped frequency measurements were taken by programming a function generator with a chirped signal, going from

300 Hz to 2500 Hz over periods of 0.001, 0.020, 0.100, 0.200, 0.500, 1, 2, 5, 10, and 20 seconds. Data was recorded on
an oscilloscope at a sampling frequency of 10 kHz and processed in MATLAB. An unsteady lock-in amplifier algorithm
(ULIA) was developed by applying concepts from an analog lock-in amplifier and applying a reference phase method.

A reference phase method was applied to synthesize a reference signal with a chirped-frequency, where 𝜙𝑟𝑒 𝑓 is the
integral of the reference frequency 𝑓𝑟𝑒 𝑓 .

𝜙𝑟𝑒 𝑓 (𝑡) =
∫ 𝑡1

𝑡0

2𝜋 𝑓𝑟𝑒 𝑓 (𝑡) 𝑑𝑡 =
∫ 𝑡1

𝑡0

𝜔𝑟𝑒 𝑓 (𝑡) 𝑑𝑡 (1)

A time-varying reference sine and cosine were then synthesized using the reference phase.

sin𝑟𝑒 𝑓 (𝑡) = sin(𝜙𝑟𝑒 𝑓 (𝑡)) (2)

cos𝑟𝑒 𝑓 (𝑡) = cos(𝜙𝑟𝑒 𝑓 (𝑡)) (3)

The recorded signal from the tube can be written in the form

sin𝑠𝑖𝑔 (𝑡) = 𝐴(𝑡) sin(2𝜋 𝑓𝑠𝑖𝑔 (𝑡) + 𝜙𝑠𝑖𝑔) (4)

Multiplying the sine and cosine with the recorded signal results in two new signals following the trigonometric identities:

𝐴(𝑡) sin (𝛼) cos (𝛽) = 𝐴(𝑡) ( sin (𝛼 + 𝛽) + sin (𝛼 − 𝛽)
2

) (5)

𝐴(𝑡) sin (𝛼) sin (𝛽) = 𝐴(𝑡) ( cos (𝛼 + 𝛽) − cos (𝛼 − 𝛽)
2

) (6)

Multiplying equation (4) by equations (2) and (3) results in two components of the original signal. The components can
then be multiplied by a factor of 2 to compensate for the 1/2 in the trigonometric identities.

𝑥1 = 𝐴(𝑡) (sin (2𝜋 𝑓𝑠𝑖𝑔 (𝑡) + 𝜙𝑠𝑖𝑔 + 𝜙𝑟𝑒 𝑓 (𝑡)) + sin (2𝜋 𝑓𝑠𝑖𝑔 (𝑡) + 𝜙𝑠𝑖𝑔 − 𝜙𝑟𝑒 𝑓 (𝑡))) (7)

𝑦1 = 𝐴(𝑡) (cos (2𝜋 𝑓𝑠𝑖𝑔 (𝑡) + 𝜙𝑠𝑖𝑔 + 𝜙𝑟𝑒 𝑓 (𝑡)) − cos (2𝜋 𝑓𝑠𝑖𝑔 (𝑡) + 𝜙𝑠𝑖𝑔 − 𝜙𝑟𝑒 𝑓 (𝑡))) (8)

A low pass filter with a a cut-off frequency can then be applied to these equations to remove the higher frequency term,
resulting in two sinusoids near DC (0 Hz). For this experiment, a cutoff frequency of 2 Hz was selected.

𝑥1 = 𝐴(𝑡) (sin (2𝜋 𝑓𝑠𝑖𝑔 (𝑡) + 𝜙𝑠𝑖𝑔 − 𝜙𝑟𝑒 𝑓 (𝑡))) (9)

𝑦1 = 𝐴(𝑡) (cos (2𝜋 𝑓𝑠𝑖𝑔 (𝑡) + 𝜙𝑠𝑖𝑔 − 𝜙𝑟𝑒 𝑓 (𝑡))) (10)

Ideally, the resulting signals will be close to 0 Hz; the 2-norm of the resulting signals will give the amplitude of the
original signal.

𝐴(𝑡) =
√︃
𝑥2

1 + 𝑦2
1 (11)

The fixed-frequency measurements were then directly compared to the results from the ULIA.

C. Electrical Noise
Significant background electrical noise was recorded in the signal from the tube. Frequencies of noise at 60 Hz with

harmonics at 120 Hz and 180 Hz heavily overpowered the frequency of the chirp at lower speaker amplitudes. 60 Hz is
a common frequency of electrical noise in the US because it is the frequency of the electrical grid. These frequencies
were filtered out of the recorded signal by applying a notch filter.
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IV. Results and Discussion of the Transfer Function Experiment

Fig. 3 Raw signal data in a 20 second chirp experiment.

Figure 3 displays raw data from the function generator two pressure transducers, and a reference square wave.
Transducer 1 is referencing the transducer directly on the tube, whereas transducer 2 is placed on a sense tube. The
amplitude of the signal from the function generator was set to 100 mVpp in this experiment. The figure shows peaks in
amplitude recorded in both transducers signals at the same points in time. Eventually both stop having a significant
response at frequencies greater than 1.2 kHz.

Fig. 4 ULIA results compared with fixed-frequency data in a 5 s chirp.
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Figure 4 shows the fixed-frequency measurements collected as described in section placed over the results of
the ULIA algorithm. The chirp duration was 5 seconds over a frequency range of 300 to 2500 Hz. The error
bars were recorded as ± 1 in the last significant digit and are smaller than the data symbols. The fixed-frequency
measurements, especially the ones in the 600-800 Hz range, can be seen to closely follow the ULIA until the peak,
when the fixed-frequency measurements become much steeper. A suspected cause of this discrepancy is the speed
of the chirp. That is, the steady-state signal accurately depicts the sharp signal amplitude response through the peak
with changing speaker frequency. However, during the chirped experiment, the frequency axis actually sweeps in time.
Therefore sharp peaks in the sensor response likely have frequency components beyond the low pass filter in the ULIA.
A Fourier expansion can be performed on the fixed frequency measurements, assuming the frequency axis is changing
in time as in the chirped experiments as shown in figure 5. The Fourier expansion yielded a natural frequency of 8 Hz
for the steepness of the fixed-frequency data, far above the selected low pass filter of 2 Hz. However, when increasing
the frequency of the filter, the resulting signal will become noisier. A potential solution is to decrease the 𝑑 𝑓

𝑑𝑡
of the

chirp, bringing the frequency of the peaks into the ULIA lowpass. The phase of the signal in transducer 1 is seen to be
linear with frequency for the range. However, going into the upper half of the frequency range, the signal-to-noise ratio
increases and it becomes difficult to accurately determine the phase of transducer 2. Even after being unwrapped, the
phase is highly unstable.

Fig. 5 Fourier fit on fixed frequency data in a synthesized time scale.
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Fig. 6 Transfer function of chirped data for various chirp lengths and tube lengths.

Figure 6 shows the transfer function between four signals found with chirped-frequency measurements. The
transfer functions for signals from multiple different chirp durations and tube extension lengths are displayed. As the
frequency response of the system increases and the signal-to-noise ratio increases, the transfer function results are
heavily overpowered by random noise. For frequencies above 1.2 kHz the signal amplitudes fall into the noise floor of
the transducers. Before this point, the transfer functions of all four signals are nearly identical. The same effect causes
the phase difference to be highly unpredictable. A potential solution to this problem would be to use microphones
instead of pressure transducers for measuring acoustic signals. Pressure transducers were used for this experiment
because they would be used in combustion dynamic measurements, but microphones would provide much greater
resolution for acoustics.

V. Design and Methodology of an Impedance Experiment
The results of the transfer function experiment indicate that chirped-frequency measurements can accurately match

fixed-frequency measurements with an open tube. However, this assumption is invalid to make when performing
measurements on a combustion system. With a flow-restricted exit, the acoustic signal will partially reflect from the
combustor exit. The pressure recorded in the transducers will be a combination of the incoming and reflected signals
and is best characterized by the impedance of the exit. In a chirped experiment there is a possibility that there will be
signals of different frequency depending on the characteristic lengths involved. In other words, the reference phase
method will be invalid over a region where the local frequency cannot be assumed to be constant.

Dimensional analysis suggests the elements of a combustion dynamics measurement should include the rate of
change of frequency, local speed of sound, and the characteristic length of the the measurement. Proper arrangement
yields the the chirp number, 𝐶𝑛

𝐶𝑛 =
𝑑𝑓

𝑑𝑡

( 𝑐
𝐿

)2
, (12)

where 𝑓 is the frequency, 𝑐 is the sound speed, and 𝐿 is the characteristic length of the measurement. The chirp
number then, is a dimensionless value that describes the homogeneity of the local frequency at a point in a tube. A chirp
number significantly less than 1 indicates that throughout the chirp, the frequency in the tube is in quasi-equilibrium and
can be assumed to be constant throughout the length of the tube. A number significantly greater than 1 indicates that the
local frequency in a measurement cannot be assumed to be the expected value from the chirp, and the simplest ULIA
algorithm will not work.
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A preliminary step to conducting combustion dynamic’s measurements would be to use a chirped frequency analysis
on an impedance measurement. The chirp number can be examined in an impedance measurement by modifying the
distance from an endwall to the location of the microphones on a tube. Figure 8 shows a tube with sets of microphones
positioned at two locations, yielding two different chirp numbers. The procedure for determining the acoustic impedance
would be the same in either orientation, however the characteristic length of the chirp number changes with the distance
of the microphones from the endwall. If the microphones are close to the endwall, the length will be short. 𝐶𝑛 can
therefore be increased by moving the microphones closer to the speaker side. As the microphones move closer to
the speaker, the frequency of the reflected waves will be different than the incident ones (from the speaker) and the
measurement will break down. Another method of increasing the chirp number is by decreasing the local speed of
sound. The tube in figure 8 has a valve near the exit. If measurements are performed with a rigid end, the tube can be
filled with gases that have a greater molecular mass than air, causing the speed of sound to decrease. Finally, the chirp
number can change with the rate of change of frequency, however, the physical capabilities of the function generator and
speaker must be carefully considered when modulating the frequency at a high rate of change.

Fig. 7 Frequency response of a chirped-frequency signal in a tube with a covered end.

Figure 7 shows an example of how the results of the ULIA algorithm can change with the a tube closed on both ends.
The procedure outlined by Ďuriš and Labašová was followed to create a tube to characterize the acoustic impedance

of a chirped signal [3].

Fig. 8 Scheme of two microphone transfer function method.
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Ďuriš and Labašová outline how to determine the acoustic impedance of a signal by measuring the transfer function
between the microphones. The total acoustic pressure at any point in the tube is

𝑝(𝑥) = 𝑝𝐼 (𝑥) + 𝑝𝑅 (𝑥) = 𝐴𝑒−𝑖𝑘𝑥 + 𝐵𝑒𝑖𝑘𝑥 (13)

𝑝𝐼 is the incident pressure wave, and 𝑝𝑅 is the reflected pressure wave. A, B are amplitudes of the pressures in the
incident and reflected wave. The transfer function between the two microphones is then

𝐻12 =
𝑃(𝑥2, 𝜔)
𝑃(𝑥1, 𝜔)

=
𝑒−𝑖𝑘𝑥2 + 𝑟𝑒𝑖𝑘𝑥2

𝑒−𝑖𝑘𝑥1 + 𝑟𝑒𝑖𝑘𝑥1
(14)

Where the acoustic reflection factor r is defined as:

𝑟 = 𝑟 (𝜔) = 𝐻12 − 𝑒− 𝑗𝑘𝑠

𝑒 𝑗𝑘𝑠 − 𝐻12
𝑒2 𝑗𝑘 (𝑠+𝑥2 ) = 𝑟𝑟 + 𝑗𝑟𝑖 (15)

Specific acoustic impedance ratio Z is then calculated from the equation

𝑍 = 𝑍 (𝜔) = 𝜌𝑐
1 + 𝑟

1 − 𝑟
(16)

Z is a complex values function of frequency. Both the real and imaginary components of Z will depend on frequency. A
tube was designed to use chirped-frequency signals to measure the acoustic impedance function, but it has not yet been
built.

VI. Conclusion
Methods of taking fixed-frequency measurements in a transfer function experiments were discussed. A proposed

phase-sensitive method which applies a lock-in amplifier algorithm to a chirped signal was detailed. A common transfer
function experiment was performed and both fixed-frequency and chirped-frequency measurements were taken. The
chirped-frequency measurements were then processed digitally and results were directly compared to fixed-frequency
measurements. The results showed significant similarity with the exception of the peaks of fixed-frequency measurements.
A potential solution was proposed to perform experiments with lower rate of frequency change, or slower chirps, to move
the information associated with the peaks inside the low pass filter of the ULIA. Chirped-frequency transfer functions
are compared across a range of chirp durations and tube lengths and observed to be identical in the region where
pressure is finely resolved from the transducers. The gain and phase of the transfer function started to break down near
1200-1300 Hz when the signal to noise levels got too small. A potential solution could be using microphones instead of
pressure transducers due to the increased sensitivity of microphones. An experiment analyzing the acoustic impedance
of a system was detailed by using a similar tube to a transfer function experiment except with a closed or perforated
endwall. The chirp number addition to the impedance experiment was discussed. Chirped-frequency measurements
have the potential to provide a near-continuous frequency resolution in a combustion dynamic system. They can save
resources such as fuel and labor while providing more data, at the expense of more complex signal processing.

Appendix

Listing 1 Sample ULIA code written in MATLAB
func t i on [ a , p ] = l o c k i n ( v , f s , f r e f , t f )

% v i s t h e r e co rded s i g n a l , f s i s samp l ing r a t e
% f r e f i s r e f e r e n c e f r e q u e n c y v e c t o r , t f i s a t ime v e c t o r
phase = cumt rapz ( t f , f r e f ) ; % i n t e g r a t i o n o f r e f e r e n c e t ime and f r e q u e n c y

% r e f e r e n c e s i n e and c o s i n e
r e f s i n = s i n (2 . ∗ pi . ∗ phase ) ;
r e f c o s = cos (2 . ∗ pi . ∗ phase ) ;

f o r i = 1 : l eng th ( [ 6 0 , 120 , 180 ] )
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w0 = f r e q s ( i ) / ( f s / 2 ) ; % Normal i zed f r e q u e n c y
bw = w0 / 3 5 ; % Bandwidth
[ b , a ] = i i r n o t c h (w0 , bw ) ;
v = f i l t f i l t ( b , a , v ) ; % no tch f i l t e r o f t h e s i g n a l

end

l o w p a s s f r e q = 2 ; % bandpass f r e q u e n c y o f t h e low pass f i l t e r

% x1 s i g n a l
x1 = 2 . ∗ v . ∗ r e f s i n ;
x1 = lowpass ( x1 , l owpa s s f r e q , f s , S t e e p n e s s = 0 . 9 9 ) ;
% y1 s i g n a l
y1 = 2 . ∗ v . ∗ r e f c o s ;
y1 = lowpass ( y1 , l owpa s s f r e q , f s , S t e e p n e s s = 0 . 9 9 ) ;
a = sqr t ( x1 . ^ 2 + y1 . ^ 2 ) ; % magni tude o f t h e two s i g n a l s
p = atan2 ( y1 , x1 ) ; % phase o f t h e two s i g n a l s
p = unwrap ( p1 ) ; % unwrapping t h e phase

end

Acknowledgments
We would like to acknowledge Julia Rivelli from the U.S. Air Force for her contributions to this research.

References
[1] FAUSTI, P., and FARINA, A., “ACOUSTIC MEASUREMENTS IN OPERA HOUSES: COMPARISON BETWEEN DIF-

FERENT TECHNIQUES AND EQUIPMENT,” Journal of Sound and Vibration, Vol. 232, No. 1, 2000, pp. 213–229. https:
//doi.org/https://doi.org/10.1006/jsvi.1999.2694, URL https://www.sciencedirect.com/science/article/pii/S0022460X99926949.

[2] Boyle, D. K., Henderson, B. S., and Hultgren, L. S., “Transfer-Function Determination for Infinite-Tube-Probe Pressure
Transducers with Application to Turbofan Core/Combuster Noise,” 25th AIAA/CEAS Aeroacoustics Conference, May 2019.
https://doi.org/10.2514/6.2019-2588, URL https://arc.aiaa.org/doi/abs/10.2514/6.2019-2588.

[3] Ďuriš, R., and Labašová, E., “The design of an impedance tube and testing of sound absorption coefficient of selected materials,”
IOP Conference Series: Materials Science and Engineering, Vol. 1050, No. 1, 2021, p. 012003. https://doi.org/10.1088/1757-
899X/1050/1/012003, URL https://dx.doi.org/10.1088/1757-899X/1050/1/012003.

10

https://doi.org/https://doi.org/10.1006/jsvi.1999.2694
https://doi.org/https://doi.org/10.1006/jsvi.1999.2694
https://www.sciencedirect.com/science/article/pii/S0022460X99926949
https://doi.org/10.2514/6.2019-2588
https://arc.aiaa.org/doi/abs/10.2514/6.2019-2588
https://doi.org/10.1088/1757-899X/1050/1/012003
https://doi.org/10.1088/1757-899X/1050/1/012003
https://dx.doi.org/10.1088/1757-899X/1050/1/012003

	Nomenclature
	Introduction
	Design and Methodology of a Transfer Function Experiment
	Fixed Frequency Measurements
	Chirped Frequency Measurements
	Electrical Noise

	Results and Discussion of the Transfer Function Experiment
	Design and Methodology of an Impedance Experiment
	Conclusion

