
Active Control and Guidance-Aided Propulsive Landing
Research for Small-Scale Vehicles

Cheng Liu∗

Georgia Institute of Technology, Atlanta, GA, 30332, United States of America

In recent decades, rocket launches have been primarily single-use, with an average cost of
over 1 billion dollars. With the breakthrough from SpaceX, reusable systems started to be
widely adopted. This study aims to apply reusable technology on a smaller scale by propulsively
landing model-scale rockets using active thrust vectoring and GNSS guidance. The study
involves developing a custom flight computer and software which conducts sensor fusion and
various methods of data filtering, such as PID and Kalman Filtering. Through communication
protocols such as I2C, the flight computer is able to conduct accurate data acquisition from the
onboard IMU and barometer. In addition, a 2 degrees of freedom thrust vectoring module was
implemented to receive PWM output from the flight computer and perform accurate attitude
correction of the vehicle by changing the direction of the thrust. To tackle the dynamic error
caused by the structural deficit, the study have constructed a matrix to address dynamic error
during the actuation of the thrust vectoring module. This study provides valuable insight into
the feasibility of conducting propulsive launching and landing of model-scale vehicles using
GNC guidance and custom avionics.

Nomenclature

𝑢(𝑡) = PID control variabler
𝐾𝑝 = proportional gain
𝑒(𝑡) = error value
𝐾𝑖 = integral gain
d𝑒 = change in error value
d𝑡 = time step
𝜔 = angular velocity
®𝑑 = vector pointing from the center of mass to the point of application of the thrust vector
®𝐹𝐻 = vector component of thrust vector which passes through the vehicle’s center of mass
®𝐹𝑁 = vector component of thrust vector which is normal to the line of action of ®𝐹𝐻
®𝜏 = torque vector

I. Introduction

Inherently, most modern space launch vehicles are aerodynamically unstable – their centers of pressure are ahead
of, or relatively close to, their centers of gravity. In order to counter the issues regarding instability, the idea of active

Thrust Vector Control (TVC) was introduced [1].
During the process of active TVC stabilization, a vehicle’s Thrust Vectoring Module (TVM) actuates with the effort

of redirecting the thrust vector, creating a vector component ®𝐹𝑁 . As a result, ®𝜏 can be represented by the following
equation:

®𝜏 = ®𝑑 × ®𝐹𝑁 (1)

Following Newton’s Second Law for Rotation, ®𝜏 induces a rotational motion of the vehicle about its center of gravity,
forcing the heading of the vehicle to change [2]. Based on the principles of TVC, this study applies the theory by scaling
down the space-shot vehicles.

∗Undergraduate Student, Department of Aerospace Engineering, AIAA Student Member (1600100), cliu794@gatech.edu

1



II. Overview of Testing Platform

Fig. 1 3D model of the testing platform

The study constructed and designed a customized rocket with various avionics components, landing legs, and a
gimballing module, allowing it to serve as a testing platform (Fig 1) to validate the active control capabilities of vehicles
in small scale. The rocket is propelled by two commercial black powder rocket motors, Estes F15-0 and Estes E16.

A. Flight Computer

Fig. 2 Flight Computer with Various Components Annotated

1. Flight Computer (Fig. 2) Motherboard
In order to house various sensors and reduce wiring difficulties within the test vehicle, the study designed and

manufactured a flight computer circuit board.
Preparing for more versatile testing applications in the long run, the flight computer was equipped with additional

features such as spare PWM ports for analog output, Inter-Integrated Circuit (I2C), and Serial Peripheral Interface (SPI)
ports for digital communication, and VCC power ports.

2. Main Processing Unit (MPU)
The main processing power of the flight computer originates from the Micro Controller Unit (MCU) iMXRT1060.

With a nominal clock speed of 600 MHz, the MCU processes data from sensors quickly while being responsive to
changes in flight. The onboard IMU and barometer accurately read the position of the rocket.

2



3. Attitude Sensors
The onboard MPU6050 IMU is capable of operating under ±16g. With the Digital Motion Processor integrated into

the sensor, MPU6050 is able to create a stream of data of acceleration on the 3 axes as well as relatively accurate yaw,
pitch, roll data while taking computational stress off from the MPU [3].

Along with the IMU, the BMP280 barometric pressure sensor is also selected to measure altitude by detecting the
surrounding air pressure inside the vehicle. Communicating with the MCU through the I2C protocol, BMP280 provides
valuable data to the MPU by sending Barometric pressure, Temperature, and Humidity information while only taking up
two data lines.

The ZED-F9P-02B-00 GPS module provides location accuracy within 17.0 x 22.0 x 2.4 mm. Therefore, it acts as a
reliable source of position when the vehicle obtains GPS lock from the satellites.

4. Telemetry
The onboard XBee telemetry module enables wireless data communication between the ground mission control

station and the testing platform under the 2.4GHz band. Communicating using the ZigBee protocol, the telemetry
module onboard is able to provide mission control with real-time feedback of the vehicle status such as GPS location,
sensor data output, and the powering status of the flight computer. The addition of General Purpose Input/Output
(GPIO) pins on the XBee module allows remote ignition from the mission control station by sending a digital HIGH
signal to the vehicle, turning on the pyrotechnic channel configured to ignite the ascending motor.

B. Thrust Vectoring Module (TVM)

Fig. 3 3D Model of TVM with servos, motor housing, inner gimbal ring, and outer gimbal ring colored in gold,
green, light blue, and dark blue, respectively.

The study designed the TVM (Fig. 3) with the intention of gimbaling motors to control the heading of the test
vehicle. With two KST-X08 servos communicating through Pulse Width Modulation (PWM) signals with the flight
computer, the TVM is able to pivot on the 𝑥 and 𝑦 axes up to ±7◦. Upon reaching apogee, the TVM ejects the empty
ascending motor and loads the descending motor.

C. Flight Software
Being executed on the MPU of the flight computer, the flight software, written in C and C++, runs the sensor outputs

through various filters to reduce noise and improve accuracy. After determining the vehicle’s orientation across the
stages of flight, the flight software decides on the critical execution of the vehicle.

1. Real-Time Operating System
To improve readability and decrease the complexity of the flight software, the software architecture is written within

an open-source Real-Time Operating System (RTOS) framework – HeliOS [4]. The RTOS flight software architecture
includes independent tasks, such as reading data from the attitude sensors, and a scheduler that is in charge of setting

3



priorities and timing for tasks to be executed. When the flight software is initiated, the scheduler sets the execution
frequency for the tasks from predefined constants within the code. The following code snippet illustrates the creation of
IMU and Barometer tasks in the HeliOS environment.

1 xTask xTask_YPR_Update = xTaskCreate("YPR", getYPR_main , NULL);
2 xTask xTask_Altitude_Update = xTaskCreate("ALT", getAltitude_main , NULL);

2. Data Filtering
Applying an open-source Kalman Filter library SimpleKalmanFilter [5], the flight software uses Kalman filtering to

process data from the BMP280 sensor to reduce the noise in the barometric data. The coefficient of the Kalman filter
algorithm is derived by finding the standard deviation of the barometric sensor data while leaving the sensor running in
oversampling mode in a motionless and undisturbed environment. The standard deviation determines the Measurement
Uncertainty constant within the filter algorithm [6].

D. PID Control Loop

𝑢(𝑡) = 𝐾𝑝𝑒(𝑡) + 𝐾𝑖

∫
𝑒(𝑡) 𝑑𝑡 + 𝐾𝑑

𝑑𝑒

𝑑𝑡
(2)

To achieve smoother control feedback of the vehicle while avoiding significantly increasing the complexity of the
software, an ordinary Proportional, Integral, and Derivative (PID) Control Loop (Eq. 2) is added to the flight software.
Since the flight duration is short, the software omits the ‘I’ term by setting the constant 𝐾𝑖 equal to 0. During flight, two
PID loops are declared for gimbal actuation on both axes. After filtering data from the IMU with the PID loop, the flight
computer converts the angle of correction (𝑢(𝑡)) into PWM signals and sends them to the respective gimbal servos. The
following code snippet illustrates the declaration of the PID class in the flight software.

1 class PID {
2 private:
3 double lastTime = millis();
4 double integral = 0;
5 double lastErr = 90;
6 public:
7 double p = 0.3;
8 double i = 0;
9 double d = 0.01;

10

11 double UPDATE(double curErr, double rate) { //curErr should be in degrees/s
12 double curTime = millis()/1000;
13 double dx = curErr - lastErr;
14 lastErr=curErr;
15 integral += curErr*0.005;//Riemann sum
16 return p*curErr + i*integral + d*rate;
17 }
18 };

E. State Estimation
The flight software for the test platform includes state estimation functions for all stages of flight (Armed, Liftoff,

Powered Ascent, Unpowered Ascent, Apogee, Freefall, Landing Ignition, Landed) and changes configurations of the
vehicle accordingly.

After executing the launch ignition sequence, the flight software will sample for acceleration spikes of the test
vehicle caused by the ignition of the motor for the following five seconds. If successful liftoff is not detected during the
5-second launch-detect period, the flight software will enter abort mode and start disarming the flight computer and
ignition channels of both motors for safety purposes.

If liftoff was successful, the rocket will switch to the Powered Ascent Mode, which will last for the duration of the
burn time for the F15-0 motor. Throughout the Powered Ascent Stage, PID-controlled gimballing will be applied to the
vehicle. Since the vehicle will most likely lose GPS lock during this high acceleration period, the altitude feedback will
be obtained mainly from operating a dead-reckoning algorithm. In other words, the flight software will double integrate
the flight acceleration to obtain the position of the vehicle.

4



Upon entering the Unpowered Ascent stage, the software uses GPS and barometric data for apogee detection. If
the software detects that the vehicle altitude increased during the previous sampling interval and decreases during the
current sample interval, the software will mark successful apogee detection and use the TVM to eject the ascent motor
and load the new descent motor for landing. After the motor ejection sequence, the state machine will switch itself to
freefall mode.

During the freefall stage, the flight software will closely monitor the current altitude of the vehicle and calculate the
gravitational potential energy of the vehicle. Once the gravitational potential energy is equal to the energy produced by
the E-16 landing motor (27853 J), the flight software will command the ignition of the landing motor and switch the
state machine to Landing mode. If the apogee altitude is already lower than the desired altitude, the landing motor will
be ignited right away to attempt landing.

During the landing period, the TVC will be activated again with PID controls to actively keep the rocket vertical to
the ground. After no further changes in altitude and the reading is close to the ground, the flight software will switch the
state of the test vehicle to the ground, disarming all the electronic components onboard, and saving the flight data.

The following code snippet illustrates the general layout of the state machine inside the flight software:
1 if(flightState == LAUNCH && block3) {
2 flightState ++;
3 block3 = false;
4 }else if(flightState == ASCENDING && block4) {
5 TVC.ASCENDING();
6 Serial.println(mpu6050.RWAcc);
7 flightState ++;
8 }else if(flightState == PWRLSASCENDING && block1){
9 if(realAcc=1.0){

10 apogee = baro.UPDATE_ALTITUDE();
11 flightState ++;
12 block1 = false;
13 }
14 }else if(flightState == APOGEE && block2) {
15 TVC.MOTOR_EJECTION();
16 pyro.FLAP_DEPLOY();
17 digitalWrite(10,HIGH);
18 delay(50);
19 digitalWrite(10,LOW);
20 delay(50);
21 flightState ++;
22 block2 = false;
23 }else if(flightState == DESCENDING){
24 if(Ep.GetPotentialEnergy(baro.UPDATE_ALTITUDE()-baro.LAUNCHALTITUDE , MASS

) - E16 == 50, block6){//give of margin of error
25 pyro.DSCENDING_IGNITION();
26 block6 = false;
27 block5 = false;
28 }else if(Ep.GetPotentialEnergy(apogee, MASS)<E16,block5){
29 block5 = false;
30 pyro.DSCENDING_IGNITION();
31 }
32 TVC.DESCENDING();
33 }

5



III. Testings and Modeling

A. TVM Static Fire

Fig. 4 Assembly of the TVM static fire test stand

As a means to validate the structural rigidity and full-range gimballing capabilities of the TVM under the full thrust
of the F15-0, the study assembled a rigid static fire test stand from aluminum C-Channels for mounting the TVM (Fig.
4).

During the static fire test, the TVM is mounted onto the test stand with the servos connecting with the flight computer
on the side. The flight computer runs the testing software which pivots the motor in its full ±7◦ range of operation on
both axes while the motor is exerting full thrust on the TVM.

(a) +7◦ on x-axis (b) −7◦ on x-axis (c) +7◦ on y-axis (d) −7◦ on y-axis

Fig. 5 TVM pivoting in the within the maximum range of operation during static fire

6



B. TVM Dynamic Error Correction Model

(a) TVM Linkage With letters
(b) Geometric representation of the
same mechanism

Fig. 6 Real and Geometric representation of the 4-bar linkage problem on TVM

One of the concerns identified during the test fire was the inability of the TVM (Thrust Vectoring Mechanism) to
achieve precise angular adjustment as commanded by the flight computer. For instance, when the servo’s horn pivots 10
degrees, the motor casing pivots less than 10 degrees. Further analysis of this matter determined that the root cause of
this discrepancy was a structural design deficiency, resulting in a phenomenon commonly recognized as the "four-bar
linkage problem" (Fig. 6). The following mathematical computation and code snippet will derive the solution model to
this problem, which will not only apply to this particular study but to all.

1 double alpha = M_PI/2+beta-OMEGA_AO*t;
2 double AC = oppoLengthLawOfCosine(AO, CO, alpha);
3 double gamma = oppoAngleLawOfCosine(BC, AC, AB);
4 double BCO = gamma + oppoAngleLawOfCosine(CO, AC, AO);
5 double BCB = BCO - atan(AB/HC);
6 double AOA = OMEGA_AO*t;
7

8 double X_B = -BC*sin(BCB)+X_C;
9 double Y_B = BC*cos(BCB)+Y_C;

10

11 double X_A = -sin(OMEGA_AO*t)*AO;
12 double Y_A = cos(OMEGA_AO*t)*AO;
13

14 double BA_i = X_A - X_B;
15 double BA_j = Y_A - Y_B;
16

17 double OA_i = X_A;
18 double OA_j = Y_A;
19

20 double CB_i = X_B-X_C;
21 double CB_j = Y_B-Y_C;
22

23 //cramer’s rule
24 double OMEGA_AB = det({{OA_i*OMEGA_AO, CB_i},{OA_j*OMEGA_AO ,CB_j}})/det({{BA_i,CB_i},{BA_j,CB_j

}});
25 double OMEGA_BC = det({{BA_i,OA_i*OMEGA_AO},{BA_j,OA_j*OMEGA_AO}})/det({{BA_i,CB_i},{BA_j,CB_j}})

;

7



∵𝛽 = tan−1
(
𝐻𝐶

𝐻𝑂

)
(3)

𝛼 = (90 + 𝛽) + 𝜔𝐴𝑂 · 𝑡 (4)

∴𝐴𝐶2 = 𝐴𝑂2 +𝑂𝐶2 − 2 · 𝐴𝑂 · 𝑂𝐶 · 𝑐𝑜𝑠(𝛼) (5)

cos−1
(
𝐴𝐶2 − 𝐴𝑂2 −𝑂𝐶2

−2 · 𝐴𝑂 · 𝑂𝐶

)
= 𝛼 (6)

𝐴𝐵2 = 𝐵𝐶2 + 𝐴𝑂2 +𝑂𝐶2 − 2 · 𝐴𝑂 · 𝑂𝐶 · cos (𝛼) − 2 · 𝐵𝐶 · 𝐴𝐶 · cos (𝛾) (7)

∴𝛾 = cos−1
(
𝐴𝐵2 − 𝐵𝐶2 − 𝐴𝑂2 −𝑂𝐶2 + 2 · 𝐴𝑂 · 𝑂𝐶 · cos (𝛼)

−2 · 𝐵𝐶 · 𝐴𝐶

)
(8)

∴∠𝐵𝐶𝑂 = 𝛾 + ∠𝐴𝐶𝑂 (9)

∵𝐴𝑂2 = 𝐴𝐶2 +𝑂𝐶2 − 2 · 𝐴𝐶 · 𝑂𝐶 · cos(∠𝐴𝐶𝑂) (10)

∠𝐴𝐶𝑂 = cos−1
(
𝐴𝑂2 − 𝐴𝐶2 −𝑂𝐶2

−2 · 𝐴𝐶 · 𝑂𝐶

)
(11)

∴∠𝐵𝐶𝑂 = 𝛾 + 𝑐𝑜𝑠−1
(
𝐴𝑂2 − 𝐴𝐶2 −𝑂𝐶2

−2 · 𝐴𝐶 · 𝑂𝐶

)
(12)

∵𝑉𝐴|𝐵 = 𝑉𝐴 −𝑉𝐵 (13)

∴ ®𝑉𝐴 = ®𝜔𝐴𝑂 × ®𝑟𝐴|𝑂 (14)
®𝑉𝐴 = 𝑂𝐴𝑖𝜔𝐴𝑂 𝑗 −𝑂𝐴 𝑗𝜔𝐴𝑂𝑖 (15)

∴ ®𝑉𝐵 = ®𝜔𝐵𝐶 × ®𝑟𝐵 |𝐶 (16)
®𝑉𝐵 = 𝐶𝐵𝑖 · 𝜔𝐵𝐶 𝑗 − 𝐶𝐵 𝑗 · 𝜔𝐵𝐶𝑖 (17)

∴ ®𝑉𝐴𝐵 = ®𝜔𝐴𝐵 × ®𝑟𝐴|𝐵 (18)
®𝑉𝐴𝐵 = 𝐵𝐴𝑖𝜔𝐴𝐵 𝑗 − 𝐵𝐴 𝑗𝜔𝐴𝐵𝑖 (19)

∴

{
𝐵𝐴𝑖𝜔𝐴𝐵 = 𝑂𝐴𝑖𝜔𝐴𝑂 − 𝐶𝐵𝑖𝜔𝐵𝐶

𝐵𝐴𝑖𝜔𝐴𝐵 = 𝑂𝐴 𝑗𝜔𝐴𝑂 − 𝐶𝐵 𝑗𝜔𝐵𝐶

(20)

Applying Cramer’s Rule of solving system of first order equations, we can arrive at the matrix:

𝜔𝐴𝐵 =

𝑑𝑒𝑡

[
𝐶𝐵𝑖 𝑂𝐴𝑖 · 𝜔𝐴𝑂

𝐶𝐵 𝑗 𝑂𝐴 𝑗 · 𝜔𝐴𝑂

]
𝑑𝑒𝑡

[
𝐵𝐴𝑖 𝐶𝐵𝑖

𝐵𝐴 𝑗 𝐶𝐵 𝑗

] (21)

𝜔𝐵𝐶 =

𝑑𝑒𝑡

[
𝐵𝐴𝑖 𝑂𝐴𝑖 · 𝜔𝐴𝑂

𝐵𝐴 𝑗 𝑂𝐴 𝑗 · 𝜔𝐴𝑂

]
𝑑𝑒𝑡

[
𝐵𝐴𝑖 𝐶𝐵𝑖

𝐵𝐴 𝑗 𝐶𝐵 𝑗

] (22)

The result showcase the angular speed of the TVM and relative to the angular speed of the servo. In this case, 𝐴𝐵 is the
linkage arm between servo and TVM, while 𝐵𝐶 is the TVM and 𝐴𝑂 is the servo arm.

8



IV. Results and Discussion

A. TVC Response
During testing, vehicle exemplifies signs of active error correction during the powered ascent of the flight by

changing the direction of thrust(Fig. 7).

(a) Liftoff (b) TVM Correction (c) TVM Correction (d) TVM Over-correction

Fig. 7 TMV reacting to the deviation detected by the IMU sensor onboard, last picture shows an over-correction
of TVM

While the flight computer effectively detected positional deviations in the rocket’s trajectory through the application
of PID filtering, observations indicate that the TVM system may be exhibiting excessive responsiveness, potentially
leading to over-correction and unnecessary oscillation of the vehicle’s heading (Fig. 7d).

To address this concern, adjustments will be made to the proportional (P) and derivative (D) coefficients within the
control software. Fine-tuning these coefficients can serve to reduce the sensitivity of the TVM system, promoting more
stable and controlled flight dynamics.

B. Sensor Noise Reduction

(a) Data before applying Kalman Filter (b) Data After applying Kalman Filter

Fig. 8 Barometric sensor output before and after Kalman Filtering

Following the implementation of the Kalman filter for data filtering, a notable reduction in the noise within the
output signals from both the Inertial Measurement Unit (IMU) and barometer has been achieved. Without extensive
filtering, the unfiltered input signals exhibit spikes, thereby inducing abrupt and undesirable perturbations in the flight
dynamics.

9



V. Conclusion
This study verified that Thrust Vector Control Theory is applicable on a smaller scale by using a hobby-size rocket

as a testing platform. However, there are still limitations and room for improvement. For example, PID gains should still
be tuned so that the vehicle doesn’t overcorrect. Additionally, active controlled landing is still yet to be proven to be
executable due to mission abort of the flight testing procedure caused by unexpected yaw-pitch gain during the flight.
However, it is still evident that the thrust vectoring logic and methodology show effect on a smaller scale. Furthermore,
the dynamic error correction model discussed in Section III.B can act as a helpful reference for any other gimbaling
rocketry.

The study aims to introduce a physical throttling mechanism in addition to the existing throttling algorithm. This
strategic enhancement will contribute to a more comprehensive and adaptable control system, further enhancing the
precision and reliability of our vehicle’s performance.

Acknowledgments
The author would like to acknowledge the generous funding from the ISM Parents Connection. The contents are

solely the responsibility of the author and do not necessarily represent the official views of the funder. Additionally, the
author would like to acknowledge Manny Peterson, an open-source developer, for his assistance with the study.

References
[1] YAĞMUR, H., ŞEN, S., BAYAR, C., and SERBEST, K., “Design of A 3-DOF Thrust Control System for Rocket Engines,”

Journal of Smart Systems Research (, Vol. 30, 2022, p. 30–48.

[2] Sutton, G. P., and Biblarz, O., “Rocket Propulsion Elements,” 2016.

[3] Rowberg, J., CJROWBERG/i2cdevlib: I2C Device Library Collection for AVR/Arduino or Other c++-Based Mcus., GitHub,
https://github.com/jrowberg/i2cdevlib, 2021.

[4] Peterson, M., heliosproj/HeliOS: A community delivered, open source embedded operating system project., GitHub,
https://github.com/heliosproj/HeliOS, 2021.

[5] Sene, D., denyssene/SimpleKalmanFilter: A basic implementation of Kalman Filter for single variable models., GitHub,
https://github.com/denyssene/SimpleKalmanFilter, 2021.

[6] Siouris, G. M., “Missile Guidance and Control Systems,” 2003.

10


	Introduction
	Overview of Testing Platform
	Flight Computer
	Flight Computer (Fig. 2) Motherboard
	Main Processing Unit (MPU)
	Attitude Sensors
	Telemetry

	Thrust Vectoring Module (TVM)
	Flight Software
	Real-Time Operating System
	Data Filtering

	PID Control Loop
	State Estimation

	Testings and Modeling
	TVM Static Fire
	TVM Dynamic Error Correction Model

	Results and Discussion
	TVC Response
	Sensor Noise Reduction

	Conclusion

